LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY

Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2013-02, Vol.764 (2), p.1-15
Hauptverfasser: Weyant, Anja, Schafer, Chad, Wood-Vasey, W Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 2
container_start_page 1
container_title The Astrophysical journal
container_volume 764
creator Weyant, Anja
Schafer, Chad
Wood-Vasey, W Michael
description Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.
doi_str_mv 10.1088/0004-637X/764/2/116
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22167751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705073057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-f55d622ff4bfc490f106ecad46abee590f224bb3d00f6bfad14e3d34c97769643</originalsourceid><addsrcrecordid>eNqNkUFv0zAYhi0EEmXwC7hY4sIl1I4dO-FmOodaS-ModWE9WYnjiKKuGXF24B_ws0nXaeedPr2vHr36pAeAjxh9wShNlwghGjHCb5ec0WW8xJi9AguckDSiJOGvweKZeAvehfD7HOMsW4B_hbqRhVprfR3ltZRwpbcbXejvaiUKqMpc1rJcSfhTmTU0-0pC1cDtrpJ1qX8I-RWKqqr1rdoII-E3sZdbJcp5ZFPtjDBKlzDXNRSPTSFnxtRSmI0sDdQ53M3TtRGqNPv34E3fHIP_8HSvwC6XZrWOnn6JHEnTKeqTpGNx3Pe07R3NUI8R867pKGta75O5iGPatqRDqGdt33SYetIR6jLOWcYouQKfLrtDmA42uMPk3S83nE7eTTaOMeM8wTP1-ULdj8OfBx8me3cIzh-PzckPD8FijtOMZGmSvgBFCeIEJXxGyQV14xDC6Ht7Px7umvGvxcieRdqzF3vWZGeRNrazSPIfFSKF5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705073057</pqid></control><display><type>article</type><title>LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Weyant, Anja ; Schafer, Chad ; Wood-Vasey, W Michael</creator><creatorcontrib>Weyant, Anja ; Schafer, Chad ; Wood-Vasey, W Michael</creatorcontrib><description>Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/764/2/116</identifier><language>eng</language><publisher>United States</publisher><subject>APPROXIMATIONS ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Bayesian analysis ; Computer simulation ; COMPUTERIZED SIMULATION ; COSMOLOGICAL CONSTANT ; COSMOLOGY ; EQUATIONS OF STATE ; ERRORS ; GAUSS FUNCTION ; Inference ; Mathematical analysis ; Mathematical models ; NONLUMINOUS MATTER ; PROBABILITY ; RED SHIFT ; SUPERNOVAE ; Supernovas</subject><ispartof>The Astrophysical journal, 2013-02, Vol.764 (2), p.1-15</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-f55d622ff4bfc490f106ecad46abee590f224bb3d00f6bfad14e3d34c97769643</citedby><cites>FETCH-LOGICAL-c388t-f55d622ff4bfc490f106ecad46abee590f224bb3d00f6bfad14e3d34c97769643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22167751$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Weyant, Anja</creatorcontrib><creatorcontrib>Schafer, Chad</creatorcontrib><creatorcontrib>Wood-Vasey, W Michael</creatorcontrib><title>LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY</title><title>The Astrophysical journal</title><description>Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.</description><subject>APPROXIMATIONS</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COSMOLOGICAL CONSTANT</subject><subject>COSMOLOGY</subject><subject>EQUATIONS OF STATE</subject><subject>ERRORS</subject><subject>GAUSS FUNCTION</subject><subject>Inference</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>NONLUMINOUS MATTER</subject><subject>PROBABILITY</subject><subject>RED SHIFT</subject><subject>SUPERNOVAE</subject><subject>Supernovas</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv0zAYhi0EEmXwC7hY4sIl1I4dO-FmOodaS-ModWE9WYnjiKKuGXF24B_ws0nXaeedPr2vHr36pAeAjxh9wShNlwghGjHCb5ec0WW8xJi9AguckDSiJOGvweKZeAvehfD7HOMsW4B_hbqRhVprfR3ltZRwpbcbXejvaiUKqMpc1rJcSfhTmTU0-0pC1cDtrpJ1qX8I-RWKqqr1rdoII-E3sZdbJcp5ZFPtjDBKlzDXNRSPTSFnxtRSmI0sDdQ53M3TtRGqNPv34E3fHIP_8HSvwC6XZrWOnn6JHEnTKeqTpGNx3Pe07R3NUI8R867pKGta75O5iGPatqRDqGdt33SYetIR6jLOWcYouQKfLrtDmA42uMPk3S83nE7eTTaOMeM8wTP1-ULdj8OfBx8me3cIzh-PzckPD8FijtOMZGmSvgBFCeIEJXxGyQV14xDC6Ht7Px7umvGvxcieRdqzF3vWZGeRNrazSPIfFSKF5Q</recordid><startdate>20130220</startdate><enddate>20130220</enddate><creator>Weyant, Anja</creator><creator>Schafer, Chad</creator><creator>Wood-Vasey, W Michael</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20130220</creationdate><title>LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY</title><author>Weyant, Anja ; Schafer, Chad ; Wood-Vasey, W Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-f55d622ff4bfc490f106ecad46abee590f224bb3d00f6bfad14e3d34c97769643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>APPROXIMATIONS</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COSMOLOGICAL CONSTANT</topic><topic>COSMOLOGY</topic><topic>EQUATIONS OF STATE</topic><topic>ERRORS</topic><topic>GAUSS FUNCTION</topic><topic>Inference</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>NONLUMINOUS MATTER</topic><topic>PROBABILITY</topic><topic>RED SHIFT</topic><topic>SUPERNOVAE</topic><topic>Supernovas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weyant, Anja</creatorcontrib><creatorcontrib>Schafer, Chad</creatorcontrib><creatorcontrib>Wood-Vasey, W Michael</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weyant, Anja</au><au>Schafer, Chad</au><au>Wood-Vasey, W Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY</atitle><jtitle>The Astrophysical journal</jtitle><date>2013-02-20</date><risdate>2013</risdate><volume>764</volume><issue>2</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.</abstract><cop>United States</cop><doi>10.1088/0004-637X/764/2/116</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2013-02, Vol.764 (2), p.1-15
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22167751
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects APPROXIMATIONS
ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Bayesian analysis
Computer simulation
COMPUTERIZED SIMULATION
COSMOLOGICAL CONSTANT
COSMOLOGY
EQUATIONS OF STATE
ERRORS
GAUSS FUNCTION
Inference
Mathematical analysis
Mathematical models
NONLUMINOUS MATTER
PROBABILITY
RED SHIFT
SUPERNOVAE
Supernovas
title LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LIKELIHOOD-FREE%20COSMOLOGICAL%20INFERENCE%20WITH%20TYPE%20Ia%20SUPERNOVAE:%20APPROXIMATE%20BAYESIAN%20COMPUTATION%20FOR%20A%20COMPLETE%20TREATMENT%20OF%20UNCERTAINTY&rft.jtitle=The%20Astrophysical%20journal&rft.au=Weyant,%20Anja&rft.date=2013-02-20&rft.volume=764&rft.issue=2&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/764/2/116&rft_dat=%3Cproquest_osti_%3E1705073057%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705073057&rft_id=info:pmid/&rfr_iscdi=true