LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY
Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2013-02, Vol.764 (2), p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | The Astrophysical journal |
container_volume | 764 |
creator | Weyant, Anja Schafer, Chad Wood-Vasey, W Michael |
description | Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae. |
doi_str_mv | 10.1088/0004-637X/764/2/116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22167751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705073057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-f55d622ff4bfc490f106ecad46abee590f224bb3d00f6bfad14e3d34c97769643</originalsourceid><addsrcrecordid>eNqNkUFv0zAYhi0EEmXwC7hY4sIl1I4dO-FmOodaS-ModWE9WYnjiKKuGXF24B_ws0nXaeedPr2vHr36pAeAjxh9wShNlwghGjHCb5ec0WW8xJi9AguckDSiJOGvweKZeAvehfD7HOMsW4B_hbqRhVprfR3ltZRwpbcbXejvaiUKqMpc1rJcSfhTmTU0-0pC1cDtrpJ1qX8I-RWKqqr1rdoII-E3sZdbJcp5ZFPtjDBKlzDXNRSPTSFnxtRSmI0sDdQ53M3TtRGqNPv34E3fHIP_8HSvwC6XZrWOnn6JHEnTKeqTpGNx3Pe07R3NUI8R867pKGta75O5iGPatqRDqGdt33SYetIR6jLOWcYouQKfLrtDmA42uMPk3S83nE7eTTaOMeM8wTP1-ULdj8OfBx8me3cIzh-PzckPD8FijtOMZGmSvgBFCeIEJXxGyQV14xDC6Ht7Px7umvGvxcieRdqzF3vWZGeRNrazSPIfFSKF5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705073057</pqid></control><display><type>article</type><title>LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Weyant, Anja ; Schafer, Chad ; Wood-Vasey, W Michael</creator><creatorcontrib>Weyant, Anja ; Schafer, Chad ; Wood-Vasey, W Michael</creatorcontrib><description>Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/764/2/116</identifier><language>eng</language><publisher>United States</publisher><subject>APPROXIMATIONS ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Bayesian analysis ; Computer simulation ; COMPUTERIZED SIMULATION ; COSMOLOGICAL CONSTANT ; COSMOLOGY ; EQUATIONS OF STATE ; ERRORS ; GAUSS FUNCTION ; Inference ; Mathematical analysis ; Mathematical models ; NONLUMINOUS MATTER ; PROBABILITY ; RED SHIFT ; SUPERNOVAE ; Supernovas</subject><ispartof>The Astrophysical journal, 2013-02, Vol.764 (2), p.1-15</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-f55d622ff4bfc490f106ecad46abee590f224bb3d00f6bfad14e3d34c97769643</citedby><cites>FETCH-LOGICAL-c388t-f55d622ff4bfc490f106ecad46abee590f224bb3d00f6bfad14e3d34c97769643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22167751$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Weyant, Anja</creatorcontrib><creatorcontrib>Schafer, Chad</creatorcontrib><creatorcontrib>Wood-Vasey, W Michael</creatorcontrib><title>LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY</title><title>The Astrophysical journal</title><description>Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.</description><subject>APPROXIMATIONS</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COSMOLOGICAL CONSTANT</subject><subject>COSMOLOGY</subject><subject>EQUATIONS OF STATE</subject><subject>ERRORS</subject><subject>GAUSS FUNCTION</subject><subject>Inference</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>NONLUMINOUS MATTER</subject><subject>PROBABILITY</subject><subject>RED SHIFT</subject><subject>SUPERNOVAE</subject><subject>Supernovas</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv0zAYhi0EEmXwC7hY4sIl1I4dO-FmOodaS-ModWE9WYnjiKKuGXF24B_ws0nXaeedPr2vHr36pAeAjxh9wShNlwghGjHCb5ec0WW8xJi9AguckDSiJOGvweKZeAvehfD7HOMsW4B_hbqRhVprfR3ltZRwpbcbXejvaiUKqMpc1rJcSfhTmTU0-0pC1cDtrpJ1qX8I-RWKqqr1rdoII-E3sZdbJcp5ZFPtjDBKlzDXNRSPTSFnxtRSmI0sDdQ53M3TtRGqNPv34E3fHIP_8HSvwC6XZrWOnn6JHEnTKeqTpGNx3Pe07R3NUI8R867pKGta75O5iGPatqRDqGdt33SYetIR6jLOWcYouQKfLrtDmA42uMPk3S83nE7eTTaOMeM8wTP1-ULdj8OfBx8me3cIzh-PzckPD8FijtOMZGmSvgBFCeIEJXxGyQV14xDC6Ht7Px7umvGvxcieRdqzF3vWZGeRNrazSPIfFSKF5Q</recordid><startdate>20130220</startdate><enddate>20130220</enddate><creator>Weyant, Anja</creator><creator>Schafer, Chad</creator><creator>Wood-Vasey, W Michael</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20130220</creationdate><title>LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY</title><author>Weyant, Anja ; Schafer, Chad ; Wood-Vasey, W Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-f55d622ff4bfc490f106ecad46abee590f224bb3d00f6bfad14e3d34c97769643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>APPROXIMATIONS</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COSMOLOGICAL CONSTANT</topic><topic>COSMOLOGY</topic><topic>EQUATIONS OF STATE</topic><topic>ERRORS</topic><topic>GAUSS FUNCTION</topic><topic>Inference</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>NONLUMINOUS MATTER</topic><topic>PROBABILITY</topic><topic>RED SHIFT</topic><topic>SUPERNOVAE</topic><topic>Supernovas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weyant, Anja</creatorcontrib><creatorcontrib>Schafer, Chad</creatorcontrib><creatorcontrib>Wood-Vasey, W Michael</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weyant, Anja</au><au>Schafer, Chad</au><au>Wood-Vasey, W Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY</atitle><jtitle>The Astrophysical journal</jtitle><date>2013-02-20</date><risdate>2013</risdate><volume>764</volume><issue>2</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.</abstract><cop>United States</cop><doi>10.1088/0004-637X/764/2/116</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2013-02, Vol.764 (2), p.1-15 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22167751 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | APPROXIMATIONS ASTROPHYSICS ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Bayesian analysis Computer simulation COMPUTERIZED SIMULATION COSMOLOGICAL CONSTANT COSMOLOGY EQUATIONS OF STATE ERRORS GAUSS FUNCTION Inference Mathematical analysis Mathematical models NONLUMINOUS MATTER PROBABILITY RED SHIFT SUPERNOVAE Supernovas |
title | LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LIKELIHOOD-FREE%20COSMOLOGICAL%20INFERENCE%20WITH%20TYPE%20Ia%20SUPERNOVAE:%20APPROXIMATE%20BAYESIAN%20COMPUTATION%20FOR%20A%20COMPLETE%20TREATMENT%20OF%20UNCERTAINTY&rft.jtitle=The%20Astrophysical%20journal&rft.au=Weyant,%20Anja&rft.date=2013-02-20&rft.volume=764&rft.issue=2&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/764/2/116&rft_dat=%3Cproquest_osti_%3E1705073057%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705073057&rft_id=info:pmid/&rfr_iscdi=true |