Numerical simulation of a plasma actuator based on ion transport

Two-dimensional numerical simulation of ion transport and flow around a single dielectric barrier discharge plasma actuator (PA) is performed. Spatial distributions of ions and electrons as well as their time evolution are obtained by solving the transport equations of monovalent positive ions, mono...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2013-06, Vol.113 (24)
Hauptverfasser: Yamamoto, Seiya, Fukagata, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Journal of applied physics
container_volume 113
creator Yamamoto, Seiya
Fukagata, Koji
description Two-dimensional numerical simulation of ion transport and flow around a single dielectric barrier discharge plasma actuator (PA) is performed. Spatial distributions of ions and electrons as well as their time evolution are obtained by solving the transport equations of monovalent positive ions, monovalent negative ions, and electrons. Voltage and frequency of the driving alternating-current signal are assumed to be 8 kV and 5 kHz, respectively. Special focus is laid upon the effect of voltage gradient dV/dt on the magnitude of the body force. The validity of steady force models often used in flow simulation is also examined. The simulation results show that the magnitude of the body force induced by the PA increases as the voltage gradient dV/dt increases and its increase rate becomes milder at higher voltage. The mechanism of body force generation is explained from the time evolution of number density fields of ions and electrons. A comparison between flow simulations using a time-resolved body force and its time-averaged counterpart demonstrates that the time-averaged model gives sufficiently accurate results when the time scale of the flow is more than 30 times greater than that of the PA.
doi_str_mv 10.1063/1.4809975
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22163075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_4809975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-b514e724d0fbc42b6fc2d56dd21689ac7f4f88ff6df598fe2f365ab5424e38db3</originalsourceid><addsrcrecordid>eNotkLtOwzAYRi0EEqEw8AaWmBhSfE3sDVRxkypYYLb--CKCkjiynYG3J1U7fcN3dIaD0C0lW0oa_kC3QhGtW3mGKkqUrlspyTmqCGG0VrrVl-gq519CKFVcV-jxYxl96i0MOPfjMkDp44RjwIDnAfIIGGxZoMSEO8je4fU9ECXBlOeYyjW6CDBkf3PaDfp-ef7avdX7z9f33dO-tpzxUneSCt8y4UjorGBdEyxzsnGO0UZpsG0QQakQGhekVsGzwBsJnRRMeK5cxzfo7uiNufQm2754-2PjNHlbDFstnLRype6PlE0x5-SDmVM_QvozlJhDIEPNKRD_B7dXV-I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation of a plasma actuator based on ion transport</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Yamamoto, Seiya ; Fukagata, Koji</creator><creatorcontrib>Yamamoto, Seiya ; Fukagata, Koji</creatorcontrib><description>Two-dimensional numerical simulation of ion transport and flow around a single dielectric barrier discharge plasma actuator (PA) is performed. Spatial distributions of ions and electrons as well as their time evolution are obtained by solving the transport equations of monovalent positive ions, monovalent negative ions, and electrons. Voltage and frequency of the driving alternating-current signal are assumed to be 8 kV and 5 kHz, respectively. Special focus is laid upon the effect of voltage gradient dV/dt on the magnitude of the body force. The validity of steady force models often used in flow simulation is also examined. The simulation results show that the magnitude of the body force induced by the PA increases as the voltage gradient dV/dt increases and its increase rate becomes milder at higher voltage. The mechanism of body force generation is explained from the time evolution of number density fields of ions and electrons. A comparison between flow simulations using a time-resolved body force and its time-averaged counterpart demonstrates that the time-averaged model gives sufficiently accurate results when the time scale of the flow is more than 30 times greater than that of the PA.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4809975</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ACTUATORS ; ALTERNATING CURRENT ; BREAKDOWN ; COMPUTERIZED SIMULATION ; DENSITY ; DIELECTRIC MATERIALS ; ELECTRONS ; KHZ RANGE ; NUMERICAL ANALYSIS ; PLASMA ; PLASMA SIMULATION ; SIGNALS ; SPATIAL DISTRIBUTION ; TIME RESOLUTION ; TRANSPORT THEORY</subject><ispartof>Journal of applied physics, 2013-06, Vol.113 (24)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-b514e724d0fbc42b6fc2d56dd21689ac7f4f88ff6df598fe2f365ab5424e38db3</citedby><cites>FETCH-LOGICAL-c323t-b514e724d0fbc42b6fc2d56dd21689ac7f4f88ff6df598fe2f365ab5424e38db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22163075$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamamoto, Seiya</creatorcontrib><creatorcontrib>Fukagata, Koji</creatorcontrib><title>Numerical simulation of a plasma actuator based on ion transport</title><title>Journal of applied physics</title><description>Two-dimensional numerical simulation of ion transport and flow around a single dielectric barrier discharge plasma actuator (PA) is performed. Spatial distributions of ions and electrons as well as their time evolution are obtained by solving the transport equations of monovalent positive ions, monovalent negative ions, and electrons. Voltage and frequency of the driving alternating-current signal are assumed to be 8 kV and 5 kHz, respectively. Special focus is laid upon the effect of voltage gradient dV/dt on the magnitude of the body force. The validity of steady force models often used in flow simulation is also examined. The simulation results show that the magnitude of the body force induced by the PA increases as the voltage gradient dV/dt increases and its increase rate becomes milder at higher voltage. The mechanism of body force generation is explained from the time evolution of number density fields of ions and electrons. A comparison between flow simulations using a time-resolved body force and its time-averaged counterpart demonstrates that the time-averaged model gives sufficiently accurate results when the time scale of the flow is more than 30 times greater than that of the PA.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ACTUATORS</subject><subject>ALTERNATING CURRENT</subject><subject>BREAKDOWN</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DENSITY</subject><subject>DIELECTRIC MATERIALS</subject><subject>ELECTRONS</subject><subject>KHZ RANGE</subject><subject>NUMERICAL ANALYSIS</subject><subject>PLASMA</subject><subject>PLASMA SIMULATION</subject><subject>SIGNALS</subject><subject>SPATIAL DISTRIBUTION</subject><subject>TIME RESOLUTION</subject><subject>TRANSPORT THEORY</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkLtOwzAYRi0EEqEw8AaWmBhSfE3sDVRxkypYYLb--CKCkjiynYG3J1U7fcN3dIaD0C0lW0oa_kC3QhGtW3mGKkqUrlspyTmqCGG0VrrVl-gq519CKFVcV-jxYxl96i0MOPfjMkDp44RjwIDnAfIIGGxZoMSEO8je4fU9ECXBlOeYyjW6CDBkf3PaDfp-ef7avdX7z9f33dO-tpzxUneSCt8y4UjorGBdEyxzsnGO0UZpsG0QQakQGhekVsGzwBsJnRRMeK5cxzfo7uiNufQm2754-2PjNHlbDFstnLRype6PlE0x5-SDmVM_QvozlJhDIEPNKRD_B7dXV-I</recordid><startdate>20130628</startdate><enddate>20130628</enddate><creator>Yamamoto, Seiya</creator><creator>Fukagata, Koji</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20130628</creationdate><title>Numerical simulation of a plasma actuator based on ion transport</title><author>Yamamoto, Seiya ; Fukagata, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-b514e724d0fbc42b6fc2d56dd21689ac7f4f88ff6df598fe2f365ab5424e38db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ACTUATORS</topic><topic>ALTERNATING CURRENT</topic><topic>BREAKDOWN</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DENSITY</topic><topic>DIELECTRIC MATERIALS</topic><topic>ELECTRONS</topic><topic>KHZ RANGE</topic><topic>NUMERICAL ANALYSIS</topic><topic>PLASMA</topic><topic>PLASMA SIMULATION</topic><topic>SIGNALS</topic><topic>SPATIAL DISTRIBUTION</topic><topic>TIME RESOLUTION</topic><topic>TRANSPORT THEORY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Seiya</creatorcontrib><creatorcontrib>Fukagata, Koji</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Seiya</au><au>Fukagata, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of a plasma actuator based on ion transport</atitle><jtitle>Journal of applied physics</jtitle><date>2013-06-28</date><risdate>2013</risdate><volume>113</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Two-dimensional numerical simulation of ion transport and flow around a single dielectric barrier discharge plasma actuator (PA) is performed. Spatial distributions of ions and electrons as well as their time evolution are obtained by solving the transport equations of monovalent positive ions, monovalent negative ions, and electrons. Voltage and frequency of the driving alternating-current signal are assumed to be 8 kV and 5 kHz, respectively. Special focus is laid upon the effect of voltage gradient dV/dt on the magnitude of the body force. The validity of steady force models often used in flow simulation is also examined. The simulation results show that the magnitude of the body force induced by the PA increases as the voltage gradient dV/dt increases and its increase rate becomes milder at higher voltage. The mechanism of body force generation is explained from the time evolution of number density fields of ions and electrons. A comparison between flow simulations using a time-resolved body force and its time-averaged counterpart demonstrates that the time-averaged model gives sufficiently accurate results when the time scale of the flow is more than 30 times greater than that of the PA.</abstract><cop>United States</cop><doi>10.1063/1.4809975</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2013-06, Vol.113 (24)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22163075
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ACTUATORS
ALTERNATING CURRENT
BREAKDOWN
COMPUTERIZED SIMULATION
DENSITY
DIELECTRIC MATERIALS
ELECTRONS
KHZ RANGE
NUMERICAL ANALYSIS
PLASMA
PLASMA SIMULATION
SIGNALS
SPATIAL DISTRIBUTION
TIME RESOLUTION
TRANSPORT THEORY
title Numerical simulation of a plasma actuator based on ion transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20a%20plasma%20actuator%20based%20on%20ion%20transport&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Yamamoto,%20Seiya&rft.date=2013-06-28&rft.volume=113&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4809975&rft_dat=%3Ccrossref_osti_%3E10_1063_1_4809975%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true