Homological stabilizer codes

In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev’s toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2013-03, Vol.330, p.1-22
1. Verfasser: Anderson, Jonas T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 1
container_title Annals of physics
container_volume 330
creator Anderson, Jonas T.
description In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev’s toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev’s toric code or to the topological color codes. ► We show that Kitaev’s toric codes are equivalent to homological stabilizer codes on 4-valent graphs. ► We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. ► We find and classify all 2D homological stabilizer codes. ► We find optimal codes among the homological stabilizer codes.
doi_str_mv 10.1016/j.aop.2012.11.007
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22157076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491612001790</els_id><sourcerecordid>1315680929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-552f5a7cbaf4aafcf6f0f5c9e7f679776d6436356ce2f5a7d43c618f625058b93</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKs_QPBQ8OJl15nsZrKLJylqhYIXBW8hzSaast3UZCvor3drRTx5msv3Hm8-xk4RcgSky2WuwzrngDxHzAHkHhsh1JRBIZ732QgAiqyskQ7ZUUpLAMRSVCN2Ngur0IYXb3Q7Sb1e-NZ_2jgxobHpmB043SZ78nPH7On25nE6y-YPd_fT63lmSl73mRDcCS3NQrtSa2ccOXDC1FY6krWU1FBZUCHI2G-wKQtDWDniAkS1qIsxO9_1htR7lYzvrXk1oeus6RXnKCRIGqiLHbWO4W1jU69WPhnbtrqzYZMUFiiogpr_KfxFl2ETu-EHhZwqIgESBwp3lIkhpWidWke_0vFDIaitVbVUg1W1taoQ1WB1yFztMnbw8e5t3M61nbGNj9u1TfD_pL8AQHx8oA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1268665071</pqid></control><display><type>article</type><title>Homological stabilizer codes</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Anderson, Jonas T.</creator><creatorcontrib>Anderson, Jonas T.</creatorcontrib><description>In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev’s toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev’s toric code or to the topological color codes. ► We show that Kitaev’s toric codes are equivalent to homological stabilizer codes on 4-valent graphs. ► We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. ► We find and classify all 2D homological stabilizer codes. ► We find optimal codes among the homological stabilizer codes.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2012.11.007</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Color ; Color code ; CORRECTIONS ; DIAGRAMS ; Equivalence ; ERRORS ; GRAPH THEORY ; Graphs ; Homology ; LIMITING VALUES ; Operators ; Physics ; QUANTUM CRYPTOGRAPHY ; Quantum error correction ; QUANTUM MECHANICS ; QUANTUM STATES ; QUBITS ; Qubits (quantum computing) ; Topological order ; Topological quantum code ; TOPOLOGY ; Toric code</subject><ispartof>Annals of physics, 2013-03, Vol.330, p.1-22</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-552f5a7cbaf4aafcf6f0f5c9e7f679776d6436356ce2f5a7d43c618f625058b93</citedby><cites>FETCH-LOGICAL-c429t-552f5a7cbaf4aafcf6f0f5c9e7f679776d6436356ce2f5a7d43c618f625058b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aop.2012.11.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22157076$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Jonas T.</creatorcontrib><title>Homological stabilizer codes</title><title>Annals of physics</title><description>In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev’s toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev’s toric code or to the topological color codes. ► We show that Kitaev’s toric codes are equivalent to homological stabilizer codes on 4-valent graphs. ► We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. ► We find and classify all 2D homological stabilizer codes. ► We find optimal codes among the homological stabilizer codes.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Color</subject><subject>Color code</subject><subject>CORRECTIONS</subject><subject>DIAGRAMS</subject><subject>Equivalence</subject><subject>ERRORS</subject><subject>GRAPH THEORY</subject><subject>Graphs</subject><subject>Homology</subject><subject>LIMITING VALUES</subject><subject>Operators</subject><subject>Physics</subject><subject>QUANTUM CRYPTOGRAPHY</subject><subject>Quantum error correction</subject><subject>QUANTUM MECHANICS</subject><subject>QUANTUM STATES</subject><subject>QUBITS</subject><subject>Qubits (quantum computing)</subject><subject>Topological order</subject><subject>Topological quantum code</subject><subject>TOPOLOGY</subject><subject>Toric code</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKs_QPBQ8OJl15nsZrKLJylqhYIXBW8hzSaast3UZCvor3drRTx5msv3Hm8-xk4RcgSky2WuwzrngDxHzAHkHhsh1JRBIZ732QgAiqyskQ7ZUUpLAMRSVCN2Ngur0IYXb3Q7Sb1e-NZ_2jgxobHpmB043SZ78nPH7On25nE6y-YPd_fT63lmSl73mRDcCS3NQrtSa2ccOXDC1FY6krWU1FBZUCHI2G-wKQtDWDniAkS1qIsxO9_1htR7lYzvrXk1oeus6RXnKCRIGqiLHbWO4W1jU69WPhnbtrqzYZMUFiiogpr_KfxFl2ETu-EHhZwqIgESBwp3lIkhpWidWke_0vFDIaitVbVUg1W1taoQ1WB1yFztMnbw8e5t3M61nbGNj9u1TfD_pL8AQHx8oA</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Anderson, Jonas T.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20130301</creationdate><title>Homological stabilizer codes</title><author>Anderson, Jonas T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-552f5a7cbaf4aafcf6f0f5c9e7f679776d6436356ce2f5a7d43c618f625058b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Color</topic><topic>Color code</topic><topic>CORRECTIONS</topic><topic>DIAGRAMS</topic><topic>Equivalence</topic><topic>ERRORS</topic><topic>GRAPH THEORY</topic><topic>Graphs</topic><topic>Homology</topic><topic>LIMITING VALUES</topic><topic>Operators</topic><topic>Physics</topic><topic>QUANTUM CRYPTOGRAPHY</topic><topic>Quantum error correction</topic><topic>QUANTUM MECHANICS</topic><topic>QUANTUM STATES</topic><topic>QUBITS</topic><topic>Qubits (quantum computing)</topic><topic>Topological order</topic><topic>Topological quantum code</topic><topic>TOPOLOGY</topic><topic>Toric code</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Jonas T.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Jonas T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homological stabilizer codes</atitle><jtitle>Annals of physics</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>330</volume><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev’s toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev’s toric code or to the topological color codes. ► We show that Kitaev’s toric codes are equivalent to homological stabilizer codes on 4-valent graphs. ► We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. ► We find and classify all 2D homological stabilizer codes. ► We find optimal codes among the homological stabilizer codes.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2012.11.007</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2013-03, Vol.330, p.1-22
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_22157076
source ScienceDirect Journals (5 years ago - present)
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Color
Color code
CORRECTIONS
DIAGRAMS
Equivalence
ERRORS
GRAPH THEORY
Graphs
Homology
LIMITING VALUES
Operators
Physics
QUANTUM CRYPTOGRAPHY
Quantum error correction
QUANTUM MECHANICS
QUANTUM STATES
QUBITS
Qubits (quantum computing)
Topological order
Topological quantum code
TOPOLOGY
Toric code
title Homological stabilizer codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homological%20stabilizer%20codes&rft.jtitle=Annals%20of%20physics&rft.au=Anderson,%20Jonas%20T.&rft.date=2013-03-01&rft.volume=330&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2012.11.007&rft_dat=%3Cproquest_osti_%3E1315680929%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1268665071&rft_id=info:pmid/&rft_els_id=S0003491612001790&rfr_iscdi=true