Self-adjoint extensions for confined electrons: From a particle in a spherical cavity to the hydrogen atom in a sphere and on a cone

In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2012-11, Vol.327 (11), p.2742-2759
Hauptverfasser: Al-Hashimi, M.H., Wiese, U.-J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2759
container_issue 11
container_start_page 2742
container_title Annals of physics
container_volume 327
creator Al-Hashimi, M.H.
Wiese, U.-J.
description In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r potential. ► The spectrum of confined electrons and self-adjoint extension parameter. ► Cavity resonances between hydrogen bound states and states localized at the wall. ► Accidental symmetry for hydrogen atom confined in a sphere or on a cone.
doi_str_mv 10.1016/j.aop.2012.06.006
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22157009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491612001091</els_id><sourcerecordid>1136563817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-49b7892d669544db25fa648189045c70a58a9522a53df7214249087d6c287ccc3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EEkvhB3CzxIVLwtixnQROqGqhUiUOgMTNcu0J6yhrB9tbsXd-OI4W0VtP1ljfm3kzj5DXDFoGTL2bWxPXlgPjLagWQD0hOwajaqCTP56SHQB0jRiZek5e5DwDMCbksCN_vuIyNcbN0YdC8XfBkH0MmU4xURvD5AM6igvakur3e3qd4oEauppUvF2Q-lCrvO4xeWsWas29LydaIi17pPuTS_EnVqRU1QOK1ARH41bXGfiSPJvMkvHVv_eCfL---nb5ubn98unm8uNtY7tBlWr_rh9G7pQapRDujsvJKDGwYQQhbQ9GDmaUnBvZuannTHAxwtA7ZfnQW2u7C_Lm3Dfm4nW2vqDdVwOhbqc5Z7IHGCv19kytKf46Yi764LPFZTEB4zFrxjolVTew_qHhf3SOxxTqDppB1ysl6pErxc6UTTHnhJNekz-YdKqQ3tLTs67p6S09DUrX9Krmw1mD9R73HtNmF4NF59Pm1kX_iPovXK2grQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037664458</pqid></control><display><type>article</type><title>Self-adjoint extensions for confined electrons: From a particle in a spherical cavity to the hydrogen atom in a sphere and on a cone</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Al-Hashimi, M.H. ; Wiese, U.-J.</creator><creatorcontrib>Al-Hashimi, M.H. ; Wiese, U.-J.</creatorcontrib><description>In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r potential. ► The spectrum of confined electrons and self-adjoint extension parameter. ► Cavity resonances between hydrogen bound states and states localized at the wall. ► Accidental symmetry for hydrogen atom confined in a sphere or on a cone.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2012.06.006</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Accidental degeneracy ; Accidents ; ATOMIC AND MOLECULAR PHYSICS ; ATOMS ; BOUND STATE ; BOUNDARY CONDITIONS ; Cavity resonance ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Confining ; ELECTRONS ; HAMILTONIANS ; Holes ; HYDROGEN ; Hydrogen atoms ; Mathematical analysis ; Particles (of physics) ; Physics ; POTENTIALS ; RESONANCE ; Runge–Lenz vector ; Self-adjoint extensions ; SPHERES ; SPHERICAL CONFIGURATION ; Symmetry ; UNCERTAINTY PRINCIPLE ; VECTORS ; Walls</subject><ispartof>Annals of physics, 2012-11, Vol.327 (11), p.2742-2759</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-49b7892d669544db25fa648189045c70a58a9522a53df7214249087d6c287ccc3</citedby><cites>FETCH-LOGICAL-c386t-49b7892d669544db25fa648189045c70a58a9522a53df7214249087d6c287ccc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aop.2012.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22157009$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Hashimi, M.H.</creatorcontrib><creatorcontrib>Wiese, U.-J.</creatorcontrib><title>Self-adjoint extensions for confined electrons: From a particle in a spherical cavity to the hydrogen atom in a sphere and on a cone</title><title>Annals of physics</title><description>In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r potential. ► The spectrum of confined electrons and self-adjoint extension parameter. ► Cavity resonances between hydrogen bound states and states localized at the wall. ► Accidental symmetry for hydrogen atom confined in a sphere or on a cone.</description><subject>Accidental degeneracy</subject><subject>Accidents</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>ATOMS</subject><subject>BOUND STATE</subject><subject>BOUNDARY CONDITIONS</subject><subject>Cavity resonance</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Confining</subject><subject>ELECTRONS</subject><subject>HAMILTONIANS</subject><subject>Holes</subject><subject>HYDROGEN</subject><subject>Hydrogen atoms</subject><subject>Mathematical analysis</subject><subject>Particles (of physics)</subject><subject>Physics</subject><subject>POTENTIALS</subject><subject>RESONANCE</subject><subject>Runge–Lenz vector</subject><subject>Self-adjoint extensions</subject><subject>SPHERES</subject><subject>SPHERICAL CONFIGURATION</subject><subject>Symmetry</subject><subject>UNCERTAINTY PRINCIPLE</subject><subject>VECTORS</subject><subject>Walls</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EEkvhB3CzxIVLwtixnQROqGqhUiUOgMTNcu0J6yhrB9tbsXd-OI4W0VtP1ljfm3kzj5DXDFoGTL2bWxPXlgPjLagWQD0hOwajaqCTP56SHQB0jRiZek5e5DwDMCbksCN_vuIyNcbN0YdC8XfBkH0MmU4xURvD5AM6igvakur3e3qd4oEauppUvF2Q-lCrvO4xeWsWas29LydaIi17pPuTS_EnVqRU1QOK1ARH41bXGfiSPJvMkvHVv_eCfL---nb5ubn98unm8uNtY7tBlWr_rh9G7pQapRDujsvJKDGwYQQhbQ9GDmaUnBvZuannTHAxwtA7ZfnQW2u7C_Lm3Dfm4nW2vqDdVwOhbqc5Z7IHGCv19kytKf46Yi764LPFZTEB4zFrxjolVTew_qHhf3SOxxTqDppB1ysl6pErxc6UTTHnhJNekz-YdKqQ3tLTs67p6S09DUrX9Krmw1mD9R73HtNmF4NF59Pm1kX_iPovXK2grQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Al-Hashimi, M.H.</creator><creator>Wiese, U.-J.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20121101</creationdate><title>Self-adjoint extensions for confined electrons: From a particle in a spherical cavity to the hydrogen atom in a sphere and on a cone</title><author>Al-Hashimi, M.H. ; Wiese, U.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-49b7892d669544db25fa648189045c70a58a9522a53df7214249087d6c287ccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accidental degeneracy</topic><topic>Accidents</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>ATOMS</topic><topic>BOUND STATE</topic><topic>BOUNDARY CONDITIONS</topic><topic>Cavity resonance</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Confining</topic><topic>ELECTRONS</topic><topic>HAMILTONIANS</topic><topic>Holes</topic><topic>HYDROGEN</topic><topic>Hydrogen atoms</topic><topic>Mathematical analysis</topic><topic>Particles (of physics)</topic><topic>Physics</topic><topic>POTENTIALS</topic><topic>RESONANCE</topic><topic>Runge–Lenz vector</topic><topic>Self-adjoint extensions</topic><topic>SPHERES</topic><topic>SPHERICAL CONFIGURATION</topic><topic>Symmetry</topic><topic>UNCERTAINTY PRINCIPLE</topic><topic>VECTORS</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Hashimi, M.H.</creatorcontrib><creatorcontrib>Wiese, U.-J.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Hashimi, M.H.</au><au>Wiese, U.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-adjoint extensions for confined electrons: From a particle in a spherical cavity to the hydrogen atom in a sphere and on a cone</atitle><jtitle>Annals of physics</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>327</volume><issue>11</issue><spage>2742</spage><epage>2759</epage><pages>2742-2759</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r potential. ► The spectrum of confined electrons and self-adjoint extension parameter. ► Cavity resonances between hydrogen bound states and states localized at the wall. ► Accidental symmetry for hydrogen atom confined in a sphere or on a cone.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2012.06.006</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2012-11, Vol.327 (11), p.2742-2759
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_22157009
source ScienceDirect Journals (5 years ago - present)
subjects Accidental degeneracy
Accidents
ATOMIC AND MOLECULAR PHYSICS
ATOMS
BOUND STATE
BOUNDARY CONDITIONS
Cavity resonance
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Confining
ELECTRONS
HAMILTONIANS
Holes
HYDROGEN
Hydrogen atoms
Mathematical analysis
Particles (of physics)
Physics
POTENTIALS
RESONANCE
Runge–Lenz vector
Self-adjoint extensions
SPHERES
SPHERICAL CONFIGURATION
Symmetry
UNCERTAINTY PRINCIPLE
VECTORS
Walls
title Self-adjoint extensions for confined electrons: From a particle in a spherical cavity to the hydrogen atom in a sphere and on a cone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-adjoint%20extensions%20for%20confined%20electrons:%20From%20a%20particle%20in%20a%20spherical%20cavity%20to%20the%20hydrogen%20atom%20in%20a%20sphere%20and%20on%20a%20cone&rft.jtitle=Annals%20of%20physics&rft.au=Al-Hashimi,%20M.H.&rft.date=2012-11-01&rft.volume=327&rft.issue=11&rft.spage=2742&rft.epage=2759&rft.pages=2742-2759&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2012.06.006&rft_dat=%3Cproquest_osti_%3E1136563817%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037664458&rft_id=info:pmid/&rft_els_id=S0003491612001091&rfr_iscdi=true