Self-adjoint extensions for confined electrons: From a particle in a spherical cavity to the hydrogen atom in a sphere and on a cone
In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situat...
Gespeichert in:
Veröffentlicht in: | Annals of physics 2012-11, Vol.327 (11), p.2742-2759 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2759 |
---|---|
container_issue | 11 |
container_start_page | 2742 |
container_title | Annals of physics |
container_volume | 327 |
creator | Al-Hashimi, M.H. Wiese, U.-J. |
description | In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r potential.
► The spectrum of confined electrons and self-adjoint extension parameter. ► Cavity resonances between hydrogen bound states and states localized at the wall. ► Accidental symmetry for hydrogen atom confined in a sphere or on a cone. |
doi_str_mv | 10.1016/j.aop.2012.06.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22157009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491612001091</els_id><sourcerecordid>1136563817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-49b7892d669544db25fa648189045c70a58a9522a53df7214249087d6c287ccc3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EEkvhB3CzxIVLwtixnQROqGqhUiUOgMTNcu0J6yhrB9tbsXd-OI4W0VtP1ljfm3kzj5DXDFoGTL2bWxPXlgPjLagWQD0hOwajaqCTP56SHQB0jRiZek5e5DwDMCbksCN_vuIyNcbN0YdC8XfBkH0MmU4xURvD5AM6igvakur3e3qd4oEauppUvF2Q-lCrvO4xeWsWas29LydaIi17pPuTS_EnVqRU1QOK1ARH41bXGfiSPJvMkvHVv_eCfL---nb5ubn98unm8uNtY7tBlWr_rh9G7pQapRDujsvJKDGwYQQhbQ9GDmaUnBvZuannTHAxwtA7ZfnQW2u7C_Lm3Dfm4nW2vqDdVwOhbqc5Z7IHGCv19kytKf46Yi764LPFZTEB4zFrxjolVTew_qHhf3SOxxTqDppB1ysl6pErxc6UTTHnhJNekz-YdKqQ3tLTs67p6S09DUrX9Krmw1mD9R73HtNmF4NF59Pm1kX_iPovXK2grQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037664458</pqid></control><display><type>article</type><title>Self-adjoint extensions for confined electrons: From a particle in a spherical cavity to the hydrogen atom in a sphere and on a cone</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Al-Hashimi, M.H. ; Wiese, U.-J.</creator><creatorcontrib>Al-Hashimi, M.H. ; Wiese, U.-J.</creatorcontrib><description>In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r potential.
► The spectrum of confined electrons and self-adjoint extension parameter. ► Cavity resonances between hydrogen bound states and states localized at the wall. ► Accidental symmetry for hydrogen atom confined in a sphere or on a cone.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2012.06.006</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Accidental degeneracy ; Accidents ; ATOMIC AND MOLECULAR PHYSICS ; ATOMS ; BOUND STATE ; BOUNDARY CONDITIONS ; Cavity resonance ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Confining ; ELECTRONS ; HAMILTONIANS ; Holes ; HYDROGEN ; Hydrogen atoms ; Mathematical analysis ; Particles (of physics) ; Physics ; POTENTIALS ; RESONANCE ; Runge–Lenz vector ; Self-adjoint extensions ; SPHERES ; SPHERICAL CONFIGURATION ; Symmetry ; UNCERTAINTY PRINCIPLE ; VECTORS ; Walls</subject><ispartof>Annals of physics, 2012-11, Vol.327 (11), p.2742-2759</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-49b7892d669544db25fa648189045c70a58a9522a53df7214249087d6c287ccc3</citedby><cites>FETCH-LOGICAL-c386t-49b7892d669544db25fa648189045c70a58a9522a53df7214249087d6c287ccc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aop.2012.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22157009$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Hashimi, M.H.</creatorcontrib><creatorcontrib>Wiese, U.-J.</creatorcontrib><title>Self-adjoint extensions for confined electrons: From a particle in a spherical cavity to the hydrogen atom in a sphere and on a cone</title><title>Annals of physics</title><description>In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r potential.
► The spectrum of confined electrons and self-adjoint extension parameter. ► Cavity resonances between hydrogen bound states and states localized at the wall. ► Accidental symmetry for hydrogen atom confined in a sphere or on a cone.</description><subject>Accidental degeneracy</subject><subject>Accidents</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>ATOMS</subject><subject>BOUND STATE</subject><subject>BOUNDARY CONDITIONS</subject><subject>Cavity resonance</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Confining</subject><subject>ELECTRONS</subject><subject>HAMILTONIANS</subject><subject>Holes</subject><subject>HYDROGEN</subject><subject>Hydrogen atoms</subject><subject>Mathematical analysis</subject><subject>Particles (of physics)</subject><subject>Physics</subject><subject>POTENTIALS</subject><subject>RESONANCE</subject><subject>Runge–Lenz vector</subject><subject>Self-adjoint extensions</subject><subject>SPHERES</subject><subject>SPHERICAL CONFIGURATION</subject><subject>Symmetry</subject><subject>UNCERTAINTY PRINCIPLE</subject><subject>VECTORS</subject><subject>Walls</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EEkvhB3CzxIVLwtixnQROqGqhUiUOgMTNcu0J6yhrB9tbsXd-OI4W0VtP1ljfm3kzj5DXDFoGTL2bWxPXlgPjLagWQD0hOwajaqCTP56SHQB0jRiZek5e5DwDMCbksCN_vuIyNcbN0YdC8XfBkH0MmU4xURvD5AM6igvakur3e3qd4oEauppUvF2Q-lCrvO4xeWsWas29LydaIi17pPuTS_EnVqRU1QOK1ARH41bXGfiSPJvMkvHVv_eCfL---nb5ubn98unm8uNtY7tBlWr_rh9G7pQapRDujsvJKDGwYQQhbQ9GDmaUnBvZuannTHAxwtA7ZfnQW2u7C_Lm3Dfm4nW2vqDdVwOhbqc5Z7IHGCv19kytKf46Yi764LPFZTEB4zFrxjolVTew_qHhf3SOxxTqDppB1ysl6pErxc6UTTHnhJNekz-YdKqQ3tLTs67p6S09DUrX9Krmw1mD9R73HtNmF4NF59Pm1kX_iPovXK2grQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Al-Hashimi, M.H.</creator><creator>Wiese, U.-J.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20121101</creationdate><title>Self-adjoint extensions for confined electrons: From a particle in a spherical cavity to the hydrogen atom in a sphere and on a cone</title><author>Al-Hashimi, M.H. ; Wiese, U.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-49b7892d669544db25fa648189045c70a58a9522a53df7214249087d6c287ccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accidental degeneracy</topic><topic>Accidents</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>ATOMS</topic><topic>BOUND STATE</topic><topic>BOUNDARY CONDITIONS</topic><topic>Cavity resonance</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Confining</topic><topic>ELECTRONS</topic><topic>HAMILTONIANS</topic><topic>Holes</topic><topic>HYDROGEN</topic><topic>Hydrogen atoms</topic><topic>Mathematical analysis</topic><topic>Particles (of physics)</topic><topic>Physics</topic><topic>POTENTIALS</topic><topic>RESONANCE</topic><topic>Runge–Lenz vector</topic><topic>Self-adjoint extensions</topic><topic>SPHERES</topic><topic>SPHERICAL CONFIGURATION</topic><topic>Symmetry</topic><topic>UNCERTAINTY PRINCIPLE</topic><topic>VECTORS</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Hashimi, M.H.</creatorcontrib><creatorcontrib>Wiese, U.-J.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Hashimi, M.H.</au><au>Wiese, U.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-adjoint extensions for confined electrons: From a particle in a spherical cavity to the hydrogen atom in a sphere and on a cone</atitle><jtitle>Annals of physics</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>327</volume><issue>11</issue><spage>2742</spage><epage>2759</epage><pages>2742-2759</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r potential.
► The spectrum of confined electrons and self-adjoint extension parameter. ► Cavity resonances between hydrogen bound states and states localized at the wall. ► Accidental symmetry for hydrogen atom confined in a sphere or on a cone.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2012.06.006</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of physics, 2012-11, Vol.327 (11), p.2742-2759 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_osti_scitechconnect_22157009 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Accidental degeneracy Accidents ATOMIC AND MOLECULAR PHYSICS ATOMS BOUND STATE BOUNDARY CONDITIONS Cavity resonance CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Confining ELECTRONS HAMILTONIANS Holes HYDROGEN Hydrogen atoms Mathematical analysis Particles (of physics) Physics POTENTIALS RESONANCE Runge–Lenz vector Self-adjoint extensions SPHERES SPHERICAL CONFIGURATION Symmetry UNCERTAINTY PRINCIPLE VECTORS Walls |
title | Self-adjoint extensions for confined electrons: From a particle in a spherical cavity to the hydrogen atom in a sphere and on a cone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-adjoint%20extensions%20for%20confined%20electrons:%20From%20a%20particle%20in%20a%20spherical%20cavity%20to%20the%20hydrogen%20atom%20in%20a%20sphere%20and%20on%20a%20cone&rft.jtitle=Annals%20of%20physics&rft.au=Al-Hashimi,%20M.H.&rft.date=2012-11-01&rft.volume=327&rft.issue=11&rft.spage=2742&rft.epage=2759&rft.pages=2742-2759&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2012.06.006&rft_dat=%3Cproquest_osti_%3E1136563817%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037664458&rft_id=info:pmid/&rft_els_id=S0003491612001091&rfr_iscdi=true |