Carbon supported tin-based nanocomposites as anodes for Li-ion batteries
SnO2 (Sn)/C composites as anodes for Li-ion batteries were fabricated by a simple chemical process of hydrothermal synthesis and subsequent heat treatment. The as-prepared materials were characterized by various analytic techniques. Results show that heat treatment temperature has a strong influence...
Gespeichert in:
Veröffentlicht in: | Journal of solid state chemistry 2013-02, Vol.198, p.231-237 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | |
container_start_page | 231 |
container_title | Journal of solid state chemistry |
container_volume | 198 |
creator | Zhou, Xiangyang Zou, Youlan Yang, Juan |
description | SnO2 (Sn)/C composites as anodes for Li-ion batteries were fabricated by a simple chemical process of hydrothermal synthesis and subsequent heat treatment. The as-prepared materials were characterized by various analytic techniques. Results show that heat treatment temperature has a strong influence on physical and electrochemical performance of these composites. In these composites, irregular SnO2 lamellas arranged like chrysanthemum were dispersed among the elastic carbon matrix for rapid access of lithium ions to the material bulk. SnO2/C anode heat-treated at a temperature of 600°C exhibits a reversible capacity of 533.4mAh/g after 50 cycles at the current density of 100mA/g.
Chrysanthemum-like microstructures SnO2 grains expand along two-dimensional direction during cycling. The intervals among adjacent SnO2 lamellas provide the sites for lithium insertion and the space for volume expansion. After long cycling, SnO2 lamellas adhere together to form compact layers, which preserved the integrity of the structure. [Display omitted]
► Carbon supported SnO2 (Sn)/C composites have been synthesized. ► Temperature control affects the physical and electrochemical performance. ► Clusters of chrysanthemum-like microstructures were observed. ► Intervals exist between SnO2 layers. ► Integrity structure of SnO2/C composites was preserved. |
doi_str_mv | 10.1016/j.jssc.2012.10.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22150023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022459612006585</els_id><sourcerecordid>1513480542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-f0a9c6d749ffcc1bee7c5b18d22970660c9bbce2806eeb1d1cb54f56a61092db3</originalsourceid><addsrcrecordid>eNqFkU_LEzEQxhdRsL76BTwVRPCydZIm2Q14kaK-QsGLgreQzM5iSpusmVTw25ulLx4VAhmG3_x55um6lwJ2AoR5e9qdmHEnQciW2IEQj7qNAKv7QZrvj7sNgJS90tY87Z4xn6ARelSb7v7gS8hpy9dlyaXStK0x9cFzi5JPGfNlyRwr8da3l_LUojmX7TH2sdUFXyuVSPy8ezL7M9OLh_-u-_bxw9fDfX_88unz4f2xR2Wh9jN4i2YalJ1nRBGIBtRBjJOUdgBjAG0ISHIEQxTEJDBoNWvjTVMjp7C_617d-mau0TG21fAH5pQIq5NS6KZ036g3N2op-eeVuLpLZKTz2SfKV3bCDEJZpRT8H9Vir0bQSjZU3lAsmbnQ7JYSL778dgLc6oM7udUHt_qw5tqVW9Hrh_6e0Z_n4hNG_lspB7Agx3XldzeO2vV-RSqrOEpIUyyrtinHf435A2iLnYk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513480542</pqid></control><display><type>article</type><title>Carbon supported tin-based nanocomposites as anodes for Li-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Zhou, Xiangyang ; Zou, Youlan ; Yang, Juan</creator><creatorcontrib>Zhou, Xiangyang ; Zou, Youlan ; Yang, Juan</creatorcontrib><description>SnO2 (Sn)/C composites as anodes for Li-ion batteries were fabricated by a simple chemical process of hydrothermal synthesis and subsequent heat treatment. The as-prepared materials were characterized by various analytic techniques. Results show that heat treatment temperature has a strong influence on physical and electrochemical performance of these composites. In these composites, irregular SnO2 lamellas arranged like chrysanthemum were dispersed among the elastic carbon matrix for rapid access of lithium ions to the material bulk. SnO2/C anode heat-treated at a temperature of 600°C exhibits a reversible capacity of 533.4mAh/g after 50 cycles at the current density of 100mA/g.
Chrysanthemum-like microstructures SnO2 grains expand along two-dimensional direction during cycling. The intervals among adjacent SnO2 lamellas provide the sites for lithium insertion and the space for volume expansion. After long cycling, SnO2 lamellas adhere together to form compact layers, which preserved the integrity of the structure. [Display omitted]
► Carbon supported SnO2 (Sn)/C composites have been synthesized. ► Temperature control affects the physical and electrochemical performance. ► Clusters of chrysanthemum-like microstructures were observed. ► Intervals exist between SnO2 layers. ► Integrity structure of SnO2/C composites was preserved.</description><identifier>ISSN: 0022-4596</identifier><identifier>EISSN: 1095-726X</identifier><identifier>DOI: 10.1016/j.jssc.2012.10.011</identifier><identifier>CODEN: JSSCBI</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Anode ; ANODES ; Applied sciences ; CARBON ; COMPOSITE MATERIALS ; Cross-disciplinary physics: materials science; rheology ; CURRENT DENSITY ; Direct energy conversion and energy accumulation ; ELECTRIC BATTERIES ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical performance ; Exact sciences and technology ; Heat treatment ; HEAT TREATMENTS ; HYDROTHERMAL SYNTHESIS ; LAYERS ; LITHIUM ; Lithium batteries ; Lithium ion battery ; LITHIUM IONS ; Lithium-ion batteries ; MATERIALS SCIENCE ; Methods of nanofabrication ; MICROSTRUCTURE ; Nano-micro-composites ; Nanocomposites ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOSTRUCTURES ; Physics ; TEMPERATURE CONTROL ; TIN ; Tin dioxide ; TIN OXIDES</subject><ispartof>Journal of solid state chemistry, 2013-02, Vol.198, p.231-237</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-f0a9c6d749ffcc1bee7c5b18d22970660c9bbce2806eeb1d1cb54f56a61092db3</citedby><cites>FETCH-LOGICAL-c490t-f0a9c6d749ffcc1bee7c5b18d22970660c9bbce2806eeb1d1cb54f56a61092db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jssc.2012.10.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27090283$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22150023$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Xiangyang</creatorcontrib><creatorcontrib>Zou, Youlan</creatorcontrib><creatorcontrib>Yang, Juan</creatorcontrib><title>Carbon supported tin-based nanocomposites as anodes for Li-ion batteries</title><title>Journal of solid state chemistry</title><description>SnO2 (Sn)/C composites as anodes for Li-ion batteries were fabricated by a simple chemical process of hydrothermal synthesis and subsequent heat treatment. The as-prepared materials were characterized by various analytic techniques. Results show that heat treatment temperature has a strong influence on physical and electrochemical performance of these composites. In these composites, irregular SnO2 lamellas arranged like chrysanthemum were dispersed among the elastic carbon matrix for rapid access of lithium ions to the material bulk. SnO2/C anode heat-treated at a temperature of 600°C exhibits a reversible capacity of 533.4mAh/g after 50 cycles at the current density of 100mA/g.
Chrysanthemum-like microstructures SnO2 grains expand along two-dimensional direction during cycling. The intervals among adjacent SnO2 lamellas provide the sites for lithium insertion and the space for volume expansion. After long cycling, SnO2 lamellas adhere together to form compact layers, which preserved the integrity of the structure. [Display omitted]
► Carbon supported SnO2 (Sn)/C composites have been synthesized. ► Temperature control affects the physical and electrochemical performance. ► Clusters of chrysanthemum-like microstructures were observed. ► Intervals exist between SnO2 layers. ► Integrity structure of SnO2/C composites was preserved.</description><subject>Anode</subject><subject>ANODES</subject><subject>Applied sciences</subject><subject>CARBON</subject><subject>COMPOSITE MATERIALS</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CURRENT DENSITY</subject><subject>Direct energy conversion and energy accumulation</subject><subject>ELECTRIC BATTERIES</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical performance</subject><subject>Exact sciences and technology</subject><subject>Heat treatment</subject><subject>HEAT TREATMENTS</subject><subject>HYDROTHERMAL SYNTHESIS</subject><subject>LAYERS</subject><subject>LITHIUM</subject><subject>Lithium batteries</subject><subject>Lithium ion battery</subject><subject>LITHIUM IONS</subject><subject>Lithium-ion batteries</subject><subject>MATERIALS SCIENCE</subject><subject>Methods of nanofabrication</subject><subject>MICROSTRUCTURE</subject><subject>Nano-micro-composites</subject><subject>Nanocomposites</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOSTRUCTURES</subject><subject>Physics</subject><subject>TEMPERATURE CONTROL</subject><subject>TIN</subject><subject>Tin dioxide</subject><subject>TIN OXIDES</subject><issn>0022-4596</issn><issn>1095-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU_LEzEQxhdRsL76BTwVRPCydZIm2Q14kaK-QsGLgreQzM5iSpusmVTw25ulLx4VAhmG3_x55um6lwJ2AoR5e9qdmHEnQciW2IEQj7qNAKv7QZrvj7sNgJS90tY87Z4xn6ARelSb7v7gS8hpy9dlyaXStK0x9cFzi5JPGfNlyRwr8da3l_LUojmX7TH2sdUFXyuVSPy8ezL7M9OLh_-u-_bxw9fDfX_88unz4f2xR2Wh9jN4i2YalJ1nRBGIBtRBjJOUdgBjAG0ISHIEQxTEJDBoNWvjTVMjp7C_617d-mau0TG21fAH5pQIq5NS6KZ036g3N2op-eeVuLpLZKTz2SfKV3bCDEJZpRT8H9Vir0bQSjZU3lAsmbnQ7JYSL778dgLc6oM7udUHt_qw5tqVW9Hrh_6e0Z_n4hNG_lspB7Agx3XldzeO2vV-RSqrOEpIUyyrtinHf435A2iLnYk</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Zhou, Xiangyang</creator><creator>Zou, Youlan</creator><creator>Yang, Juan</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20130201</creationdate><title>Carbon supported tin-based nanocomposites as anodes for Li-ion batteries</title><author>Zhou, Xiangyang ; Zou, Youlan ; Yang, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-f0a9c6d749ffcc1bee7c5b18d22970660c9bbce2806eeb1d1cb54f56a61092db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anode</topic><topic>ANODES</topic><topic>Applied sciences</topic><topic>CARBON</topic><topic>COMPOSITE MATERIALS</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CURRENT DENSITY</topic><topic>Direct energy conversion and energy accumulation</topic><topic>ELECTRIC BATTERIES</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical performance</topic><topic>Exact sciences and technology</topic><topic>Heat treatment</topic><topic>HEAT TREATMENTS</topic><topic>HYDROTHERMAL SYNTHESIS</topic><topic>LAYERS</topic><topic>LITHIUM</topic><topic>Lithium batteries</topic><topic>Lithium ion battery</topic><topic>LITHIUM IONS</topic><topic>Lithium-ion batteries</topic><topic>MATERIALS SCIENCE</topic><topic>Methods of nanofabrication</topic><topic>MICROSTRUCTURE</topic><topic>Nano-micro-composites</topic><topic>Nanocomposites</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOSTRUCTURES</topic><topic>Physics</topic><topic>TEMPERATURE CONTROL</topic><topic>TIN</topic><topic>Tin dioxide</topic><topic>TIN OXIDES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiangyang</creatorcontrib><creatorcontrib>Zou, Youlan</creatorcontrib><creatorcontrib>Yang, Juan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiangyang</au><au>Zou, Youlan</au><au>Yang, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon supported tin-based nanocomposites as anodes for Li-ion batteries</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>198</volume><spage>231</spage><epage>237</epage><pages>231-237</pages><issn>0022-4596</issn><eissn>1095-726X</eissn><coden>JSSCBI</coden><abstract>SnO2 (Sn)/C composites as anodes for Li-ion batteries were fabricated by a simple chemical process of hydrothermal synthesis and subsequent heat treatment. The as-prepared materials were characterized by various analytic techniques. Results show that heat treatment temperature has a strong influence on physical and electrochemical performance of these composites. In these composites, irregular SnO2 lamellas arranged like chrysanthemum were dispersed among the elastic carbon matrix for rapid access of lithium ions to the material bulk. SnO2/C anode heat-treated at a temperature of 600°C exhibits a reversible capacity of 533.4mAh/g after 50 cycles at the current density of 100mA/g.
Chrysanthemum-like microstructures SnO2 grains expand along two-dimensional direction during cycling. The intervals among adjacent SnO2 lamellas provide the sites for lithium insertion and the space for volume expansion. After long cycling, SnO2 lamellas adhere together to form compact layers, which preserved the integrity of the structure. [Display omitted]
► Carbon supported SnO2 (Sn)/C composites have been synthesized. ► Temperature control affects the physical and electrochemical performance. ► Clusters of chrysanthemum-like microstructures were observed. ► Intervals exist between SnO2 layers. ► Integrity structure of SnO2/C composites was preserved.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jssc.2012.10.011</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4596 |
ispartof | Journal of solid state chemistry, 2013-02, Vol.198, p.231-237 |
issn | 0022-4596 1095-726X |
language | eng |
recordid | cdi_osti_scitechconnect_22150023 |
source | Elsevier ScienceDirect Journals |
subjects | Anode ANODES Applied sciences CARBON COMPOSITE MATERIALS Cross-disciplinary physics: materials science rheology CURRENT DENSITY Direct energy conversion and energy accumulation ELECTRIC BATTERIES Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemical performance Exact sciences and technology Heat treatment HEAT TREATMENTS HYDROTHERMAL SYNTHESIS LAYERS LITHIUM Lithium batteries Lithium ion battery LITHIUM IONS Lithium-ion batteries MATERIALS SCIENCE Methods of nanofabrication MICROSTRUCTURE Nano-micro-composites Nanocomposites NANOSCIENCE AND NANOTECHNOLOGY NANOSTRUCTURES Physics TEMPERATURE CONTROL TIN Tin dioxide TIN OXIDES |
title | Carbon supported tin-based nanocomposites as anodes for Li-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20supported%20tin-based%20nanocomposites%20as%20anodes%20for%20Li-ion%20batteries&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=Zhou,%20Xiangyang&rft.date=2013-02-01&rft.volume=198&rft.spage=231&rft.epage=237&rft.pages=231-237&rft.issn=0022-4596&rft.eissn=1095-726X&rft.coden=JSSCBI&rft_id=info:doi/10.1016/j.jssc.2012.10.011&rft_dat=%3Cproquest_osti_%3E1513480542%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513480542&rft_id=info:pmid/&rft_els_id=S0022459612006585&rfr_iscdi=true |