Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy
Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure (μ-XANES) enables the direct speciation analysis of arsenic in...
Gespeichert in:
Veröffentlicht in: | Environmental research 2010-07, Vol.110 (5), p.413-416 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | 5 |
container_start_page | 413 |
container_title | Environmental research |
container_volume | 110 |
creator | Bacquart, Thomas Devès, Guillaume Ortega, Richard |
description | Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure (μ-XANES) enables the direct speciation analysis of arsenic in sub-cellular compartments avoiding cell fractionation and other preparation steps that might modify the chemical species. This methodology couples tracking of cellular organelles in a single cell by confocal or epifluorescence microscopy with local analysis of chemical species by μ-XANES. Here we report the results obtained with a μ-XANES experimental setup based on Kirkpatrick–Baez X-ray focusing optics that maintains high flux of incoming radiation (>10
11
ph/s) at micrometric spatial resolution (1.5×4.0
μm
2). This original experimental setup enabled the direct speciation analysis of arsenic in sub-cellular organelles with a 10
−15
g detection limit. μ-XANES shows that inorganic arsenite, As(OH)
3, is the main form of arsenic in the cytosol, nucleus, and mitochondrial network of cultured cancer cells exposed to As
2O
3. On the other hand, a predominance of As(III) species is observed in HepG2 cells exposed to As(OH)
3 with, in some cases, oxidation to a pentavalent form in nuclear structures of HepG2 cells. The observation of intra-nuclear mixed redox states suggests an inter-individual variability in a cell population that can only be evidenced with direct sub-cellular speciation analysis. |
doi_str_mv | 10.1016/j.envres.2009.09.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22149218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013935109001741</els_id><sourcerecordid>1730071830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-e613280adc7fe99d39902a9bf4fc4a16a8a8217da5d3382f2afe9a57d7a558323</originalsourceid><addsrcrecordid>eNp9kV2L1TAQhoso7tnVfyASENGbHidJP5IbQdb1Axa8UfAuzElTzaFNaqZdOP_edHvQu4WBYeCZdz7eonjBYc-BN--OexfukqO9AND7NaB5VOw46KYEXcvHxQ6Ay1LLml8Ul0THXPJawtPigmsFALXaFcNHn5ydGU3Oepx9DAwDDifyxGLPMJEL3jIfGC2H0rphWAZMzMZxwjSPLszEFvLhFxu9TbH8WSY8MTxQTNO92io8p0g2TqdnxZMeB3LPz_mq-PHp5vv1l_L22-ev1x9uS1upai5dw6VQgJ1te6d1J7UGgfrQV72tkDeoUAnedlh3UirRC8wY1m3XYl0rKeRV8WrTjTR7Q9bPzv62MYS8ihGCV1pwlak3GzWl-GdxNJvR03ohBhcXMm0DXDeqrjP59kGStxKgzZKQ0WpD8zOIkuvNlPyI6WQ4mNU3czSbb2b1zawBTW57eZ6wHEbX_W86G5WB12cAyeLQJwzW0z9OCN1KrdrMvd84l_97511az3fBuu7eZ9NF__AmfwHQHrlq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730071830</pqid></control><display><type>article</type><title>Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bacquart, Thomas ; Devès, Guillaume ; Ortega, Richard</creator><creatorcontrib>Bacquart, Thomas ; Devès, Guillaume ; Ortega, Richard</creatorcontrib><description>Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure (μ-XANES) enables the direct speciation analysis of arsenic in sub-cellular compartments avoiding cell fractionation and other preparation steps that might modify the chemical species. This methodology couples tracking of cellular organelles in a single cell by confocal or epifluorescence microscopy with local analysis of chemical species by μ-XANES. Here we report the results obtained with a μ-XANES experimental setup based on Kirkpatrick–Baez X-ray focusing optics that maintains high flux of incoming radiation (>10
11
ph/s) at micrometric spatial resolution (1.5×4.0
μm
2). This original experimental setup enabled the direct speciation analysis of arsenic in sub-cellular organelles with a 10
−15
g detection limit. μ-XANES shows that inorganic arsenite, As(OH)
3, is the main form of arsenic in the cytosol, nucleus, and mitochondrial network of cultured cancer cells exposed to As
2O
3. On the other hand, a predominance of As(III) species is observed in HepG2 cells exposed to As(OH)
3 with, in some cases, oxidation to a pentavalent form in nuclear structures of HepG2 cells. The observation of intra-nuclear mixed redox states suggests an inter-individual variability in a cell population that can only be evidenced with direct sub-cellular speciation analysis.</description><identifier>ISSN: 0013-9351</identifier><identifier>EISSN: 1096-0953</identifier><identifier>DOI: 10.1016/j.envres.2009.09.006</identifier><identifier>PMID: 19800058</identifier><identifier>CODEN: ENVRAL</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; ABSORPTION SPECTROSCOPY ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - metabolism ; Antineoplastic Agents - toxicity ; ARSENATES ; ARSENIC ; Arsenic - chemistry ; Arsenic - metabolism ; Arsenic - toxicity ; ARSENIC OXIDES ; Arsenicals - chemistry ; Arsenicals - metabolism ; Biological and medical sciences ; Carcinogenesis, carcinogens and anticarcinogens ; Cell ; Cell Line, Tumor ; Cellular ; Chemical agents ; Chemical and industrial products toxicology. Toxic occupational diseases ; Compartments ; Exposure ; Focusing ; Hep G2 Cells ; Humans ; Intracellular Space - drug effects ; Intracellular Space - metabolism ; Medical sciences ; Metals and various inorganic compounds ; Microorganisms ; MICROSCOPY ; MITOCHONDRIA ; NEOPLASMS ; Organelles ; Organelles - metabolism ; OXIDATION ; Oxides - chemistry ; Oxides - metabolism ; Oxides - toxicity ; PH VALUE ; SPATIAL RESOLUTION ; Speciation ; Synchrotron ; SYNCHROTRONS ; Toxicology ; Tumors ; X RADIATION ; X-Ray Absorption Spectroscopy ; X-RAY SPECTROSCOPY ; X-rays</subject><ispartof>Environmental research, 2010-07, Vol.110 (5), p.413-416</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>2009 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-e613280adc7fe99d39902a9bf4fc4a16a8a8217da5d3382f2afe9a57d7a558323</citedby><cites>FETCH-LOGICAL-c484t-e613280adc7fe99d39902a9bf4fc4a16a8a8217da5d3382f2afe9a57d7a558323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envres.2009.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3536,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22973987$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19800058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22149218$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bacquart, Thomas</creatorcontrib><creatorcontrib>Devès, Guillaume</creatorcontrib><creatorcontrib>Ortega, Richard</creatorcontrib><title>Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy</title><title>Environmental research</title><addtitle>Environ Res</addtitle><description>Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure (μ-XANES) enables the direct speciation analysis of arsenic in sub-cellular compartments avoiding cell fractionation and other preparation steps that might modify the chemical species. This methodology couples tracking of cellular organelles in a single cell by confocal or epifluorescence microscopy with local analysis of chemical species by μ-XANES. Here we report the results obtained with a μ-XANES experimental setup based on Kirkpatrick–Baez X-ray focusing optics that maintains high flux of incoming radiation (>10
11
ph/s) at micrometric spatial resolution (1.5×4.0
μm
2). This original experimental setup enabled the direct speciation analysis of arsenic in sub-cellular organelles with a 10
−15
g detection limit. μ-XANES shows that inorganic arsenite, As(OH)
3, is the main form of arsenic in the cytosol, nucleus, and mitochondrial network of cultured cancer cells exposed to As
2O
3. On the other hand, a predominance of As(III) species is observed in HepG2 cells exposed to As(OH)
3 with, in some cases, oxidation to a pentavalent form in nuclear structures of HepG2 cells. The observation of intra-nuclear mixed redox states suggests an inter-individual variability in a cell population that can only be evidenced with direct sub-cellular speciation analysis.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ABSORPTION SPECTROSCOPY</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - metabolism</subject><subject>Antineoplastic Agents - toxicity</subject><subject>ARSENATES</subject><subject>ARSENIC</subject><subject>Arsenic - chemistry</subject><subject>Arsenic - metabolism</subject><subject>Arsenic - toxicity</subject><subject>ARSENIC OXIDES</subject><subject>Arsenicals - chemistry</subject><subject>Arsenicals - metabolism</subject><subject>Biological and medical sciences</subject><subject>Carcinogenesis, carcinogens and anticarcinogens</subject><subject>Cell</subject><subject>Cell Line, Tumor</subject><subject>Cellular</subject><subject>Chemical agents</subject><subject>Chemical and industrial products toxicology. Toxic occupational diseases</subject><subject>Compartments</subject><subject>Exposure</subject><subject>Focusing</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Intracellular Space - drug effects</subject><subject>Intracellular Space - metabolism</subject><subject>Medical sciences</subject><subject>Metals and various inorganic compounds</subject><subject>Microorganisms</subject><subject>MICROSCOPY</subject><subject>MITOCHONDRIA</subject><subject>NEOPLASMS</subject><subject>Organelles</subject><subject>Organelles - metabolism</subject><subject>OXIDATION</subject><subject>Oxides - chemistry</subject><subject>Oxides - metabolism</subject><subject>Oxides - toxicity</subject><subject>PH VALUE</subject><subject>SPATIAL RESOLUTION</subject><subject>Speciation</subject><subject>Synchrotron</subject><subject>SYNCHROTRONS</subject><subject>Toxicology</subject><subject>Tumors</subject><subject>X RADIATION</subject><subject>X-Ray Absorption Spectroscopy</subject><subject>X-RAY SPECTROSCOPY</subject><subject>X-rays</subject><issn>0013-9351</issn><issn>1096-0953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV2L1TAQhoso7tnVfyASENGbHidJP5IbQdb1Axa8UfAuzElTzaFNaqZdOP_edHvQu4WBYeCZdz7eonjBYc-BN--OexfukqO9AND7NaB5VOw46KYEXcvHxQ6Ay1LLml8Ul0THXPJawtPigmsFALXaFcNHn5ydGU3Oepx9DAwDDifyxGLPMJEL3jIfGC2H0rphWAZMzMZxwjSPLszEFvLhFxu9TbH8WSY8MTxQTNO92io8p0g2TqdnxZMeB3LPz_mq-PHp5vv1l_L22-ev1x9uS1upai5dw6VQgJ1te6d1J7UGgfrQV72tkDeoUAnedlh3UirRC8wY1m3XYl0rKeRV8WrTjTR7Q9bPzv62MYS8ihGCV1pwlak3GzWl-GdxNJvR03ohBhcXMm0DXDeqrjP59kGStxKgzZKQ0WpD8zOIkuvNlPyI6WQ4mNU3czSbb2b1zawBTW57eZ6wHEbX_W86G5WB12cAyeLQJwzW0z9OCN1KrdrMvd84l_97511az3fBuu7eZ9NF__AmfwHQHrlq</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Bacquart, Thomas</creator><creator>Devès, Guillaume</creator><creator>Ortega, Richard</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20100701</creationdate><title>Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy</title><author>Bacquart, Thomas ; Devès, Guillaume ; Ortega, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-e613280adc7fe99d39902a9bf4fc4a16a8a8217da5d3382f2afe9a57d7a558323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ABSORPTION SPECTROSCOPY</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - metabolism</topic><topic>Antineoplastic Agents - toxicity</topic><topic>ARSENATES</topic><topic>ARSENIC</topic><topic>Arsenic - chemistry</topic><topic>Arsenic - metabolism</topic><topic>Arsenic - toxicity</topic><topic>ARSENIC OXIDES</topic><topic>Arsenicals - chemistry</topic><topic>Arsenicals - metabolism</topic><topic>Biological and medical sciences</topic><topic>Carcinogenesis, carcinogens and anticarcinogens</topic><topic>Cell</topic><topic>Cell Line, Tumor</topic><topic>Cellular</topic><topic>Chemical agents</topic><topic>Chemical and industrial products toxicology. Toxic occupational diseases</topic><topic>Compartments</topic><topic>Exposure</topic><topic>Focusing</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Intracellular Space - drug effects</topic><topic>Intracellular Space - metabolism</topic><topic>Medical sciences</topic><topic>Metals and various inorganic compounds</topic><topic>Microorganisms</topic><topic>MICROSCOPY</topic><topic>MITOCHONDRIA</topic><topic>NEOPLASMS</topic><topic>Organelles</topic><topic>Organelles - metabolism</topic><topic>OXIDATION</topic><topic>Oxides - chemistry</topic><topic>Oxides - metabolism</topic><topic>Oxides - toxicity</topic><topic>PH VALUE</topic><topic>SPATIAL RESOLUTION</topic><topic>Speciation</topic><topic>Synchrotron</topic><topic>SYNCHROTRONS</topic><topic>Toxicology</topic><topic>Tumors</topic><topic>X RADIATION</topic><topic>X-Ray Absorption Spectroscopy</topic><topic>X-RAY SPECTROSCOPY</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bacquart, Thomas</creatorcontrib><creatorcontrib>Devès, Guillaume</creatorcontrib><creatorcontrib>Ortega, Richard</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bacquart, Thomas</au><au>Devès, Guillaume</au><au>Ortega, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy</atitle><jtitle>Environmental research</jtitle><addtitle>Environ Res</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>110</volume><issue>5</issue><spage>413</spage><epage>416</epage><pages>413-416</pages><issn>0013-9351</issn><eissn>1096-0953</eissn><coden>ENVRAL</coden><abstract>Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure (μ-XANES) enables the direct speciation analysis of arsenic in sub-cellular compartments avoiding cell fractionation and other preparation steps that might modify the chemical species. This methodology couples tracking of cellular organelles in a single cell by confocal or epifluorescence microscopy with local analysis of chemical species by μ-XANES. Here we report the results obtained with a μ-XANES experimental setup based on Kirkpatrick–Baez X-ray focusing optics that maintains high flux of incoming radiation (>10
11
ph/s) at micrometric spatial resolution (1.5×4.0
μm
2). This original experimental setup enabled the direct speciation analysis of arsenic in sub-cellular organelles with a 10
−15
g detection limit. μ-XANES shows that inorganic arsenite, As(OH)
3, is the main form of arsenic in the cytosol, nucleus, and mitochondrial network of cultured cancer cells exposed to As
2O
3. On the other hand, a predominance of As(III) species is observed in HepG2 cells exposed to As(OH)
3 with, in some cases, oxidation to a pentavalent form in nuclear structures of HepG2 cells. The observation of intra-nuclear mixed redox states suggests an inter-individual variability in a cell population that can only be evidenced with direct sub-cellular speciation analysis.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>19800058</pmid><doi>10.1016/j.envres.2009.09.006</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-9351 |
ispartof | Environmental research, 2010-07, Vol.110 (5), p.413-416 |
issn | 0013-9351 1096-0953 |
language | eng |
recordid | cdi_osti_scitechconnect_22149218 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 60 APPLIED LIFE SCIENCES ABSORPTION SPECTROSCOPY Antineoplastic Agents - chemistry Antineoplastic Agents - metabolism Antineoplastic Agents - toxicity ARSENATES ARSENIC Arsenic - chemistry Arsenic - metabolism Arsenic - toxicity ARSENIC OXIDES Arsenicals - chemistry Arsenicals - metabolism Biological and medical sciences Carcinogenesis, carcinogens and anticarcinogens Cell Cell Line, Tumor Cellular Chemical agents Chemical and industrial products toxicology. Toxic occupational diseases Compartments Exposure Focusing Hep G2 Cells Humans Intracellular Space - drug effects Intracellular Space - metabolism Medical sciences Metals and various inorganic compounds Microorganisms MICROSCOPY MITOCHONDRIA NEOPLASMS Organelles Organelles - metabolism OXIDATION Oxides - chemistry Oxides - metabolism Oxides - toxicity PH VALUE SPATIAL RESOLUTION Speciation Synchrotron SYNCHROTRONS Toxicology Tumors X RADIATION X-Ray Absorption Spectroscopy X-RAY SPECTROSCOPY X-rays |
title | Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20speciation%20analysis%20of%20arsenic%20in%20sub-cellular%20compartments%20using%20micro-X-ray%20absorption%20spectroscopy&rft.jtitle=Environmental%20research&rft.au=Bacquart,%20Thomas&rft.date=2010-07-01&rft.volume=110&rft.issue=5&rft.spage=413&rft.epage=416&rft.pages=413-416&rft.issn=0013-9351&rft.eissn=1096-0953&rft.coden=ENVRAL&rft_id=info:doi/10.1016/j.envres.2009.09.006&rft_dat=%3Cproquest_osti_%3E1730071830%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730071830&rft_id=info:pmid/19800058&rft_els_id=S0013935109001741&rfr_iscdi=true |