Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy

Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure (μ-XANES) enables the direct speciation analysis of arsenic in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2010-07, Vol.110 (5), p.413-416
Hauptverfasser: Bacquart, Thomas, Devès, Guillaume, Ortega, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 5
container_start_page 413
container_title Environmental research
container_volume 110
creator Bacquart, Thomas
Devès, Guillaume
Ortega, Richard
description Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure (μ-XANES) enables the direct speciation analysis of arsenic in sub-cellular compartments avoiding cell fractionation and other preparation steps that might modify the chemical species. This methodology couples tracking of cellular organelles in a single cell by confocal or epifluorescence microscopy with local analysis of chemical species by μ-XANES. Here we report the results obtained with a μ-XANES experimental setup based on Kirkpatrick–Baez X-ray focusing optics that maintains high flux of incoming radiation (>10 11 ph/s) at micrometric spatial resolution (1.5×4.0 μm 2). This original experimental setup enabled the direct speciation analysis of arsenic in sub-cellular organelles with a 10 −15 g detection limit. μ-XANES shows that inorganic arsenite, As(OH) 3, is the main form of arsenic in the cytosol, nucleus, and mitochondrial network of cultured cancer cells exposed to As 2O 3. On the other hand, a predominance of As(III) species is observed in HepG2 cells exposed to As(OH) 3 with, in some cases, oxidation to a pentavalent form in nuclear structures of HepG2 cells. The observation of intra-nuclear mixed redox states suggests an inter-individual variability in a cell population that can only be evidenced with direct sub-cellular speciation analysis.
doi_str_mv 10.1016/j.envres.2009.09.006
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22149218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013935109001741</els_id><sourcerecordid>1730071830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-e613280adc7fe99d39902a9bf4fc4a16a8a8217da5d3382f2afe9a57d7a558323</originalsourceid><addsrcrecordid>eNp9kV2L1TAQhoso7tnVfyASENGbHidJP5IbQdb1Axa8UfAuzElTzaFNaqZdOP_edHvQu4WBYeCZdz7eonjBYc-BN--OexfukqO9AND7NaB5VOw46KYEXcvHxQ6Ay1LLml8Ul0THXPJawtPigmsFALXaFcNHn5ydGU3Oepx9DAwDDifyxGLPMJEL3jIfGC2H0rphWAZMzMZxwjSPLszEFvLhFxu9TbH8WSY8MTxQTNO92io8p0g2TqdnxZMeB3LPz_mq-PHp5vv1l_L22-ev1x9uS1upai5dw6VQgJ1te6d1J7UGgfrQV72tkDeoUAnedlh3UirRC8wY1m3XYl0rKeRV8WrTjTR7Q9bPzv62MYS8ihGCV1pwlak3GzWl-GdxNJvR03ohBhcXMm0DXDeqrjP59kGStxKgzZKQ0WpD8zOIkuvNlPyI6WQ4mNU3czSbb2b1zawBTW57eZ6wHEbX_W86G5WB12cAyeLQJwzW0z9OCN1KrdrMvd84l_97511az3fBuu7eZ9NF__AmfwHQHrlq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730071830</pqid></control><display><type>article</type><title>Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bacquart, Thomas ; Devès, Guillaume ; Ortega, Richard</creator><creatorcontrib>Bacquart, Thomas ; Devès, Guillaume ; Ortega, Richard</creatorcontrib><description>Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure (μ-XANES) enables the direct speciation analysis of arsenic in sub-cellular compartments avoiding cell fractionation and other preparation steps that might modify the chemical species. This methodology couples tracking of cellular organelles in a single cell by confocal or epifluorescence microscopy with local analysis of chemical species by μ-XANES. Here we report the results obtained with a μ-XANES experimental setup based on Kirkpatrick–Baez X-ray focusing optics that maintains high flux of incoming radiation (&gt;10 11 ph/s) at micrometric spatial resolution (1.5×4.0 μm 2). This original experimental setup enabled the direct speciation analysis of arsenic in sub-cellular organelles with a 10 −15 g detection limit. μ-XANES shows that inorganic arsenite, As(OH) 3, is the main form of arsenic in the cytosol, nucleus, and mitochondrial network of cultured cancer cells exposed to As 2O 3. On the other hand, a predominance of As(III) species is observed in HepG2 cells exposed to As(OH) 3 with, in some cases, oxidation to a pentavalent form in nuclear structures of HepG2 cells. The observation of intra-nuclear mixed redox states suggests an inter-individual variability in a cell population that can only be evidenced with direct sub-cellular speciation analysis.</description><identifier>ISSN: 0013-9351</identifier><identifier>EISSN: 1096-0953</identifier><identifier>DOI: 10.1016/j.envres.2009.09.006</identifier><identifier>PMID: 19800058</identifier><identifier>CODEN: ENVRAL</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; ABSORPTION SPECTROSCOPY ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - metabolism ; Antineoplastic Agents - toxicity ; ARSENATES ; ARSENIC ; Arsenic - chemistry ; Arsenic - metabolism ; Arsenic - toxicity ; ARSENIC OXIDES ; Arsenicals - chemistry ; Arsenicals - metabolism ; Biological and medical sciences ; Carcinogenesis, carcinogens and anticarcinogens ; Cell ; Cell Line, Tumor ; Cellular ; Chemical agents ; Chemical and industrial products toxicology. Toxic occupational diseases ; Compartments ; Exposure ; Focusing ; Hep G2 Cells ; Humans ; Intracellular Space - drug effects ; Intracellular Space - metabolism ; Medical sciences ; Metals and various inorganic compounds ; Microorganisms ; MICROSCOPY ; MITOCHONDRIA ; NEOPLASMS ; Organelles ; Organelles - metabolism ; OXIDATION ; Oxides - chemistry ; Oxides - metabolism ; Oxides - toxicity ; PH VALUE ; SPATIAL RESOLUTION ; Speciation ; Synchrotron ; SYNCHROTRONS ; Toxicology ; Tumors ; X RADIATION ; X-Ray Absorption Spectroscopy ; X-RAY SPECTROSCOPY ; X-rays</subject><ispartof>Environmental research, 2010-07, Vol.110 (5), p.413-416</ispartof><rights>2009 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>2009 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-e613280adc7fe99d39902a9bf4fc4a16a8a8217da5d3382f2afe9a57d7a558323</citedby><cites>FETCH-LOGICAL-c484t-e613280adc7fe99d39902a9bf4fc4a16a8a8217da5d3382f2afe9a57d7a558323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envres.2009.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3536,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22973987$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19800058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22149218$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bacquart, Thomas</creatorcontrib><creatorcontrib>Devès, Guillaume</creatorcontrib><creatorcontrib>Ortega, Richard</creatorcontrib><title>Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy</title><title>Environmental research</title><addtitle>Environ Res</addtitle><description>Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure (μ-XANES) enables the direct speciation analysis of arsenic in sub-cellular compartments avoiding cell fractionation and other preparation steps that might modify the chemical species. This methodology couples tracking of cellular organelles in a single cell by confocal or epifluorescence microscopy with local analysis of chemical species by μ-XANES. Here we report the results obtained with a μ-XANES experimental setup based on Kirkpatrick–Baez X-ray focusing optics that maintains high flux of incoming radiation (&gt;10 11 ph/s) at micrometric spatial resolution (1.5×4.0 μm 2). This original experimental setup enabled the direct speciation analysis of arsenic in sub-cellular organelles with a 10 −15 g detection limit. μ-XANES shows that inorganic arsenite, As(OH) 3, is the main form of arsenic in the cytosol, nucleus, and mitochondrial network of cultured cancer cells exposed to As 2O 3. On the other hand, a predominance of As(III) species is observed in HepG2 cells exposed to As(OH) 3 with, in some cases, oxidation to a pentavalent form in nuclear structures of HepG2 cells. The observation of intra-nuclear mixed redox states suggests an inter-individual variability in a cell population that can only be evidenced with direct sub-cellular speciation analysis.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ABSORPTION SPECTROSCOPY</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - metabolism</subject><subject>Antineoplastic Agents - toxicity</subject><subject>ARSENATES</subject><subject>ARSENIC</subject><subject>Arsenic - chemistry</subject><subject>Arsenic - metabolism</subject><subject>Arsenic - toxicity</subject><subject>ARSENIC OXIDES</subject><subject>Arsenicals - chemistry</subject><subject>Arsenicals - metabolism</subject><subject>Biological and medical sciences</subject><subject>Carcinogenesis, carcinogens and anticarcinogens</subject><subject>Cell</subject><subject>Cell Line, Tumor</subject><subject>Cellular</subject><subject>Chemical agents</subject><subject>Chemical and industrial products toxicology. Toxic occupational diseases</subject><subject>Compartments</subject><subject>Exposure</subject><subject>Focusing</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Intracellular Space - drug effects</subject><subject>Intracellular Space - metabolism</subject><subject>Medical sciences</subject><subject>Metals and various inorganic compounds</subject><subject>Microorganisms</subject><subject>MICROSCOPY</subject><subject>MITOCHONDRIA</subject><subject>NEOPLASMS</subject><subject>Organelles</subject><subject>Organelles - metabolism</subject><subject>OXIDATION</subject><subject>Oxides - chemistry</subject><subject>Oxides - metabolism</subject><subject>Oxides - toxicity</subject><subject>PH VALUE</subject><subject>SPATIAL RESOLUTION</subject><subject>Speciation</subject><subject>Synchrotron</subject><subject>SYNCHROTRONS</subject><subject>Toxicology</subject><subject>Tumors</subject><subject>X RADIATION</subject><subject>X-Ray Absorption Spectroscopy</subject><subject>X-RAY SPECTROSCOPY</subject><subject>X-rays</subject><issn>0013-9351</issn><issn>1096-0953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV2L1TAQhoso7tnVfyASENGbHidJP5IbQdb1Axa8UfAuzElTzaFNaqZdOP_edHvQu4WBYeCZdz7eonjBYc-BN--OexfukqO9AND7NaB5VOw46KYEXcvHxQ6Ay1LLml8Ul0THXPJawtPigmsFALXaFcNHn5ydGU3Oepx9DAwDDifyxGLPMJEL3jIfGC2H0rphWAZMzMZxwjSPLszEFvLhFxu9TbH8WSY8MTxQTNO92io8p0g2TqdnxZMeB3LPz_mq-PHp5vv1l_L22-ev1x9uS1upai5dw6VQgJ1te6d1J7UGgfrQV72tkDeoUAnedlh3UirRC8wY1m3XYl0rKeRV8WrTjTR7Q9bPzv62MYS8ihGCV1pwlak3GzWl-GdxNJvR03ohBhcXMm0DXDeqrjP59kGStxKgzZKQ0WpD8zOIkuvNlPyI6WQ4mNU3czSbb2b1zawBTW57eZ6wHEbX_W86G5WB12cAyeLQJwzW0z9OCN1KrdrMvd84l_97511az3fBuu7eZ9NF__AmfwHQHrlq</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Bacquart, Thomas</creator><creator>Devès, Guillaume</creator><creator>Ortega, Richard</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20100701</creationdate><title>Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy</title><author>Bacquart, Thomas ; Devès, Guillaume ; Ortega, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-e613280adc7fe99d39902a9bf4fc4a16a8a8217da5d3382f2afe9a57d7a558323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ABSORPTION SPECTROSCOPY</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - metabolism</topic><topic>Antineoplastic Agents - toxicity</topic><topic>ARSENATES</topic><topic>ARSENIC</topic><topic>Arsenic - chemistry</topic><topic>Arsenic - metabolism</topic><topic>Arsenic - toxicity</topic><topic>ARSENIC OXIDES</topic><topic>Arsenicals - chemistry</topic><topic>Arsenicals - metabolism</topic><topic>Biological and medical sciences</topic><topic>Carcinogenesis, carcinogens and anticarcinogens</topic><topic>Cell</topic><topic>Cell Line, Tumor</topic><topic>Cellular</topic><topic>Chemical agents</topic><topic>Chemical and industrial products toxicology. Toxic occupational diseases</topic><topic>Compartments</topic><topic>Exposure</topic><topic>Focusing</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Intracellular Space - drug effects</topic><topic>Intracellular Space - metabolism</topic><topic>Medical sciences</topic><topic>Metals and various inorganic compounds</topic><topic>Microorganisms</topic><topic>MICROSCOPY</topic><topic>MITOCHONDRIA</topic><topic>NEOPLASMS</topic><topic>Organelles</topic><topic>Organelles - metabolism</topic><topic>OXIDATION</topic><topic>Oxides - chemistry</topic><topic>Oxides - metabolism</topic><topic>Oxides - toxicity</topic><topic>PH VALUE</topic><topic>SPATIAL RESOLUTION</topic><topic>Speciation</topic><topic>Synchrotron</topic><topic>SYNCHROTRONS</topic><topic>Toxicology</topic><topic>Tumors</topic><topic>X RADIATION</topic><topic>X-Ray Absorption Spectroscopy</topic><topic>X-RAY SPECTROSCOPY</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bacquart, Thomas</creatorcontrib><creatorcontrib>Devès, Guillaume</creatorcontrib><creatorcontrib>Ortega, Richard</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bacquart, Thomas</au><au>Devès, Guillaume</au><au>Ortega, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy</atitle><jtitle>Environmental research</jtitle><addtitle>Environ Res</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>110</volume><issue>5</issue><spage>413</spage><epage>416</epage><pages>413-416</pages><issn>0013-9351</issn><eissn>1096-0953</eissn><coden>ENVRAL</coden><abstract>Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure (μ-XANES) enables the direct speciation analysis of arsenic in sub-cellular compartments avoiding cell fractionation and other preparation steps that might modify the chemical species. This methodology couples tracking of cellular organelles in a single cell by confocal or epifluorescence microscopy with local analysis of chemical species by μ-XANES. Here we report the results obtained with a μ-XANES experimental setup based on Kirkpatrick–Baez X-ray focusing optics that maintains high flux of incoming radiation (&gt;10 11 ph/s) at micrometric spatial resolution (1.5×4.0 μm 2). This original experimental setup enabled the direct speciation analysis of arsenic in sub-cellular organelles with a 10 −15 g detection limit. μ-XANES shows that inorganic arsenite, As(OH) 3, is the main form of arsenic in the cytosol, nucleus, and mitochondrial network of cultured cancer cells exposed to As 2O 3. On the other hand, a predominance of As(III) species is observed in HepG2 cells exposed to As(OH) 3 with, in some cases, oxidation to a pentavalent form in nuclear structures of HepG2 cells. The observation of intra-nuclear mixed redox states suggests an inter-individual variability in a cell population that can only be evidenced with direct sub-cellular speciation analysis.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>19800058</pmid><doi>10.1016/j.envres.2009.09.006</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-9351
ispartof Environmental research, 2010-07, Vol.110 (5), p.413-416
issn 0013-9351
1096-0953
language eng
recordid cdi_osti_scitechconnect_22149218
source MEDLINE; Elsevier ScienceDirect Journals
subjects 60 APPLIED LIFE SCIENCES
ABSORPTION SPECTROSCOPY
Antineoplastic Agents - chemistry
Antineoplastic Agents - metabolism
Antineoplastic Agents - toxicity
ARSENATES
ARSENIC
Arsenic - chemistry
Arsenic - metabolism
Arsenic - toxicity
ARSENIC OXIDES
Arsenicals - chemistry
Arsenicals - metabolism
Biological and medical sciences
Carcinogenesis, carcinogens and anticarcinogens
Cell
Cell Line, Tumor
Cellular
Chemical agents
Chemical and industrial products toxicology. Toxic occupational diseases
Compartments
Exposure
Focusing
Hep G2 Cells
Humans
Intracellular Space - drug effects
Intracellular Space - metabolism
Medical sciences
Metals and various inorganic compounds
Microorganisms
MICROSCOPY
MITOCHONDRIA
NEOPLASMS
Organelles
Organelles - metabolism
OXIDATION
Oxides - chemistry
Oxides - metabolism
Oxides - toxicity
PH VALUE
SPATIAL RESOLUTION
Speciation
Synchrotron
SYNCHROTRONS
Toxicology
Tumors
X RADIATION
X-Ray Absorption Spectroscopy
X-RAY SPECTROSCOPY
X-rays
title Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20speciation%20analysis%20of%20arsenic%20in%20sub-cellular%20compartments%20using%20micro-X-ray%20absorption%20spectroscopy&rft.jtitle=Environmental%20research&rft.au=Bacquart,%20Thomas&rft.date=2010-07-01&rft.volume=110&rft.issue=5&rft.spage=413&rft.epage=416&rft.pages=413-416&rft.issn=0013-9351&rft.eissn=1096-0953&rft.coden=ENVRAL&rft_id=info:doi/10.1016/j.envres.2009.09.006&rft_dat=%3Cproquest_osti_%3E1730071830%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730071830&rft_id=info:pmid/19800058&rft_els_id=S0013935109001741&rfr_iscdi=true