Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE
This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2023-09, Vol.127 (37), p.7844-7852 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7852 |
---|---|
container_issue | 37 |
container_start_page | 7844 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 127 |
creator | Dollar, Orion Joshi, Nisarg Pfaendtner, Jim Beck, David A. C. |
description | This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure and its properties by encoding molecular structures into a 3D-aware latent space. Directed navigation through this latent space implicitly optimizes the 3D structure of a molecule, and the latent embedding can be used to condition a generative transformer to predict the candidate structure as a one-dimensional (1D) sequence. Additionally, we introduce two novel sampling methods that exploit the latent characteristics of a VAE to improve performance. We show that our method outperforms comparable 3D autoregressive and diffusion methods for predicting quantum chemical property values of novel molecules in terms of both sample quality and computational efficiency. |
doi_str_mv | 10.1021/acs.jpca.3c04188 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2212485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861643566</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-e1619b15b5981add47d685d8c4c2cb6a537ebc6c6750dbb734698aafd62e34443</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwM1pMRSLF33HGigaoVMRSWC3Hcair1C52AuLfk9KuTO9K79wnvQPANUZTjAi-1yZNNzujp9QghqU8ASPMCco4wfx0yEgWGRe0OAcXKW0QQpgSNgLzsmmccdZ3kM7hS2it6Vsd4dwm9-Hht-vWUHtYTugtXPgvHZ0e0FXUPjUhbm2E77PyEpw1uk326jjH4O2xXD08Z8vXp8XDbJlpUtAus1jgosK84oXEuq5ZXgvJa2mYIaYSmtPcVkYYkXNUV1VOmSik1k0tiKWMMToGN4e7IXVOJeM6a9YmeG9NpwjBhEk-QJMDtIvhs7epU1uXjG1b7W3okyJSYMEoF2JA0QE1MaQUbaN20W11_FEYqb1VNVhVe6vqaHWo3B0qf5vQRz88_D_-C58veLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861643566</pqid></control><display><type>article</type><title>Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE</title><source>American Chemical Society Journals</source><creator>Dollar, Orion ; Joshi, Nisarg ; Pfaendtner, Jim ; Beck, David A. C.</creator><creatorcontrib>Dollar, Orion ; Joshi, Nisarg ; Pfaendtner, Jim ; Beck, David A. C. ; Iowa State Univ., Ames, IA (United States)</creatorcontrib><description>This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure and its properties by encoding molecular structures into a 3D-aware latent space. Directed navigation through this latent space implicitly optimizes the 3D structure of a molecule, and the latent embedding can be used to condition a generative transformer to predict the candidate structure as a one-dimensional (1D) sequence. Additionally, we introduce two novel sampling methods that exploit the latent characteristics of a VAE to improve performance. We show that our method outperforms comparable 3D autoregressive and diffusion methods for predicting quantum chemical property values of novel molecules in terms of both sample quality and computational efficiency.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.3c04188</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: New Tools and Methods in Experiment and Theory ; Computer simulations ; Embedding ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Molecular modeling ; Molecular structure ; Molecules</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2023-09, Vol.127 (37), p.7844-7852</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a293t-e1619b15b5981add47d685d8c4c2cb6a537ebc6c6750dbb734698aafd62e34443</cites><orcidid>0000-0001-6727-2957 ; 0000000167272957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.3c04188$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.3c04188$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2212485$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dollar, Orion</creatorcontrib><creatorcontrib>Joshi, Nisarg</creatorcontrib><creatorcontrib>Pfaendtner, Jim</creatorcontrib><creatorcontrib>Beck, David A. C.</creatorcontrib><creatorcontrib>Iowa State Univ., Ames, IA (United States)</creatorcontrib><title>Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure and its properties by encoding molecular structures into a 3D-aware latent space. Directed navigation through this latent space implicitly optimizes the 3D structure of a molecule, and the latent embedding can be used to condition a generative transformer to predict the candidate structure as a one-dimensional (1D) sequence. Additionally, we introduce two novel sampling methods that exploit the latent characteristics of a VAE to improve performance. We show that our method outperforms comparable 3D autoregressive and diffusion methods for predicting quantum chemical property values of novel molecules in terms of both sample quality and computational efficiency.</description><subject>A: New Tools and Methods in Experiment and Theory</subject><subject>Computer simulations</subject><subject>Embedding</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Molecular modeling</subject><subject>Molecular structure</subject><subject>Molecules</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwM1pMRSLF33HGigaoVMRSWC3Hcair1C52AuLfk9KuTO9K79wnvQPANUZTjAi-1yZNNzujp9QghqU8ASPMCco4wfx0yEgWGRe0OAcXKW0QQpgSNgLzsmmccdZ3kM7hS2it6Vsd4dwm9-Hht-vWUHtYTugtXPgvHZ0e0FXUPjUhbm2E77PyEpw1uk326jjH4O2xXD08Z8vXp8XDbJlpUtAus1jgosK84oXEuq5ZXgvJa2mYIaYSmtPcVkYYkXNUV1VOmSik1k0tiKWMMToGN4e7IXVOJeM6a9YmeG9NpwjBhEk-QJMDtIvhs7epU1uXjG1b7W3okyJSYMEoF2JA0QE1MaQUbaN20W11_FEYqb1VNVhVe6vqaHWo3B0qf5vQRz88_D_-C58veLk</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>Dollar, Orion</creator><creator>Joshi, Nisarg</creator><creator>Pfaendtner, Jim</creator><creator>Beck, David A. C.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6727-2957</orcidid><orcidid>https://orcid.org/0000000167272957</orcidid></search><sort><creationdate>20230921</creationdate><title>Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE</title><author>Dollar, Orion ; Joshi, Nisarg ; Pfaendtner, Jim ; Beck, David A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-e1619b15b5981add47d685d8c4c2cb6a537ebc6c6750dbb734698aafd62e34443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>A: New Tools and Methods in Experiment and Theory</topic><topic>Computer simulations</topic><topic>Embedding</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Molecular modeling</topic><topic>Molecular structure</topic><topic>Molecules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dollar, Orion</creatorcontrib><creatorcontrib>Joshi, Nisarg</creatorcontrib><creatorcontrib>Pfaendtner, Jim</creatorcontrib><creatorcontrib>Beck, David A. C.</creatorcontrib><creatorcontrib>Iowa State Univ., Ames, IA (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dollar, Orion</au><au>Joshi, Nisarg</au><au>Pfaendtner, Jim</au><au>Beck, David A. C.</au><aucorp>Iowa State Univ., Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2023-09-21</date><risdate>2023</risdate><volume>127</volume><issue>37</issue><spage>7844</spage><epage>7852</epage><pages>7844-7852</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure and its properties by encoding molecular structures into a 3D-aware latent space. Directed navigation through this latent space implicitly optimizes the 3D structure of a molecule, and the latent embedding can be used to condition a generative transformer to predict the candidate structure as a one-dimensional (1D) sequence. Additionally, we introduce two novel sampling methods that exploit the latent characteristics of a VAE to improve performance. We show that our method outperforms comparable 3D autoregressive and diffusion methods for predicting quantum chemical property values of novel molecules in terms of both sample quality and computational efficiency.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.3c04188</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6727-2957</orcidid><orcidid>https://orcid.org/0000000167272957</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2023-09, Vol.127 (37), p.7844-7852 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_osti_scitechconnect_2212485 |
source | American Chemical Society Journals |
subjects | A: New Tools and Methods in Experiment and Theory Computer simulations Embedding INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Molecular modeling Molecular structure Molecules |
title | Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%203D%20Molecular%20Design%20with%20an%20E(3)%20Invariant%20Transformer%20VAE&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Dollar,%20Orion&rft.aucorp=Iowa%20State%20Univ.,%20Ames,%20IA%20(United%20States)&rft.date=2023-09-21&rft.volume=127&rft.issue=37&rft.spage=7844&rft.epage=7852&rft.pages=7844-7852&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.3c04188&rft_dat=%3Cproquest_osti_%3E2861643566%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861643566&rft_id=info:pmid/&rfr_iscdi=true |