Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE

This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2023-09, Vol.127 (37), p.7844-7852
Hauptverfasser: Dollar, Orion, Joshi, Nisarg, Pfaendtner, Jim, Beck, David A. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7852
container_issue 37
container_start_page 7844
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 127
creator Dollar, Orion
Joshi, Nisarg
Pfaendtner, Jim
Beck, David A. C.
description This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure and its properties by encoding molecular structures into a 3D-aware latent space. Directed navigation through this latent space implicitly optimizes the 3D structure of a molecule, and the latent embedding can be used to condition a generative transformer to predict the candidate structure as a one-dimensional (1D) sequence. Additionally, we introduce two novel sampling methods that exploit the latent characteristics of a VAE to improve performance. We show that our method outperforms comparable 3D autoregressive and diffusion methods for predicting quantum chemical property values of novel molecules in terms of both sample quality and computational efficiency.
doi_str_mv 10.1021/acs.jpca.3c04188
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2212485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861643566</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-e1619b15b5981add47d685d8c4c2cb6a537ebc6c6750dbb734698aafd62e34443</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwM1pMRSLF33HGigaoVMRSWC3Hcair1C52AuLfk9KuTO9K79wnvQPANUZTjAi-1yZNNzujp9QghqU8ASPMCco4wfx0yEgWGRe0OAcXKW0QQpgSNgLzsmmccdZ3kM7hS2it6Vsd4dwm9-Hht-vWUHtYTugtXPgvHZ0e0FXUPjUhbm2E77PyEpw1uk326jjH4O2xXD08Z8vXp8XDbJlpUtAus1jgosK84oXEuq5ZXgvJa2mYIaYSmtPcVkYYkXNUV1VOmSik1k0tiKWMMToGN4e7IXVOJeM6a9YmeG9NpwjBhEk-QJMDtIvhs7epU1uXjG1b7W3okyJSYMEoF2JA0QE1MaQUbaN20W11_FEYqb1VNVhVe6vqaHWo3B0qf5vQRz88_D_-C58veLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861643566</pqid></control><display><type>article</type><title>Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE</title><source>American Chemical Society Journals</source><creator>Dollar, Orion ; Joshi, Nisarg ; Pfaendtner, Jim ; Beck, David A. C.</creator><creatorcontrib>Dollar, Orion ; Joshi, Nisarg ; Pfaendtner, Jim ; Beck, David A. C. ; Iowa State Univ., Ames, IA (United States)</creatorcontrib><description>This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure and its properties by encoding molecular structures into a 3D-aware latent space. Directed navigation through this latent space implicitly optimizes the 3D structure of a molecule, and the latent embedding can be used to condition a generative transformer to predict the candidate structure as a one-dimensional (1D) sequence. Additionally, we introduce two novel sampling methods that exploit the latent characteristics of a VAE to improve performance. We show that our method outperforms comparable 3D autoregressive and diffusion methods for predicting quantum chemical property values of novel molecules in terms of both sample quality and computational efficiency.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.3c04188</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: New Tools and Methods in Experiment and Theory ; Computer simulations ; Embedding ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Molecular modeling ; Molecular structure ; Molecules</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2023-09, Vol.127 (37), p.7844-7852</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a293t-e1619b15b5981add47d685d8c4c2cb6a537ebc6c6750dbb734698aafd62e34443</cites><orcidid>0000-0001-6727-2957 ; 0000000167272957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.3c04188$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.3c04188$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2212485$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dollar, Orion</creatorcontrib><creatorcontrib>Joshi, Nisarg</creatorcontrib><creatorcontrib>Pfaendtner, Jim</creatorcontrib><creatorcontrib>Beck, David A. C.</creatorcontrib><creatorcontrib>Iowa State Univ., Ames, IA (United States)</creatorcontrib><title>Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure and its properties by encoding molecular structures into a 3D-aware latent space. Directed navigation through this latent space implicitly optimizes the 3D structure of a molecule, and the latent embedding can be used to condition a generative transformer to predict the candidate structure as a one-dimensional (1D) sequence. Additionally, we introduce two novel sampling methods that exploit the latent characteristics of a VAE to improve performance. We show that our method outperforms comparable 3D autoregressive and diffusion methods for predicting quantum chemical property values of novel molecules in terms of both sample quality and computational efficiency.</description><subject>A: New Tools and Methods in Experiment and Theory</subject><subject>Computer simulations</subject><subject>Embedding</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Molecular modeling</subject><subject>Molecular structure</subject><subject>Molecules</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwM1pMRSLF33HGigaoVMRSWC3Hcair1C52AuLfk9KuTO9K79wnvQPANUZTjAi-1yZNNzujp9QghqU8ASPMCco4wfx0yEgWGRe0OAcXKW0QQpgSNgLzsmmccdZ3kM7hS2it6Vsd4dwm9-Hht-vWUHtYTugtXPgvHZ0e0FXUPjUhbm2E77PyEpw1uk326jjH4O2xXD08Z8vXp8XDbJlpUtAus1jgosK84oXEuq5ZXgvJa2mYIaYSmtPcVkYYkXNUV1VOmSik1k0tiKWMMToGN4e7IXVOJeM6a9YmeG9NpwjBhEk-QJMDtIvhs7epU1uXjG1b7W3okyJSYMEoF2JA0QE1MaQUbaN20W11_FEYqb1VNVhVe6vqaHWo3B0qf5vQRz88_D_-C58veLk</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>Dollar, Orion</creator><creator>Joshi, Nisarg</creator><creator>Pfaendtner, Jim</creator><creator>Beck, David A. C.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6727-2957</orcidid><orcidid>https://orcid.org/0000000167272957</orcidid></search><sort><creationdate>20230921</creationdate><title>Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE</title><author>Dollar, Orion ; Joshi, Nisarg ; Pfaendtner, Jim ; Beck, David A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-e1619b15b5981add47d685d8c4c2cb6a537ebc6c6750dbb734698aafd62e34443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>A: New Tools and Methods in Experiment and Theory</topic><topic>Computer simulations</topic><topic>Embedding</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Molecular modeling</topic><topic>Molecular structure</topic><topic>Molecules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dollar, Orion</creatorcontrib><creatorcontrib>Joshi, Nisarg</creatorcontrib><creatorcontrib>Pfaendtner, Jim</creatorcontrib><creatorcontrib>Beck, David A. C.</creatorcontrib><creatorcontrib>Iowa State Univ., Ames, IA (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dollar, Orion</au><au>Joshi, Nisarg</au><au>Pfaendtner, Jim</au><au>Beck, David A. C.</au><aucorp>Iowa State Univ., Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2023-09-21</date><risdate>2023</risdate><volume>127</volume><issue>37</issue><spage>7844</spage><epage>7852</epage><pages>7844-7852</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>This work introduces a three-dimensional (3D) invariant graph-to-string transformer variational autoencoders (VAE) (Vagrant) for generating molecules with accurate density functional theory (DFT)-level properties. Vagrant learns to model the joint probability distribution of a 3D molecular structure and its properties by encoding molecular structures into a 3D-aware latent space. Directed navigation through this latent space implicitly optimizes the 3D structure of a molecule, and the latent embedding can be used to condition a generative transformer to predict the candidate structure as a one-dimensional (1D) sequence. Additionally, we introduce two novel sampling methods that exploit the latent characteristics of a VAE to improve performance. We show that our method outperforms comparable 3D autoregressive and diffusion methods for predicting quantum chemical property values of novel molecules in terms of both sample quality and computational efficiency.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.3c04188</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6727-2957</orcidid><orcidid>https://orcid.org/0000000167272957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2023-09, Vol.127 (37), p.7844-7852
issn 1089-5639
1520-5215
language eng
recordid cdi_osti_scitechconnect_2212485
source American Chemical Society Journals
subjects A: New Tools and Methods in Experiment and Theory
Computer simulations
Embedding
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Molecular modeling
Molecular structure
Molecules
title Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%203D%20Molecular%20Design%20with%20an%20E(3)%20Invariant%20Transformer%20VAE&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Dollar,%20Orion&rft.aucorp=Iowa%20State%20Univ.,%20Ames,%20IA%20(United%20States)&rft.date=2023-09-21&rft.volume=127&rft.issue=37&rft.spage=7844&rft.epage=7852&rft.pages=7844-7852&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.3c04188&rft_dat=%3Cproquest_osti_%3E2861643566%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861643566&rft_id=info:pmid/&rfr_iscdi=true