Gamma electron vertex imaging and application to beam range verification in proton therapy

Purpose: This paper describes a new gamma-ray imaging method, “gamma electron vertex imaging (GEVI),” which can be used for precise beam range verification in proton therapy. Methods: In GEVI imaging, the high-energy gammas from a source or nuclear interactions are first converted, by Compton scatte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2012-02, Vol.39 (2), p.1001-1005
Hauptverfasser: Hyeong Kim, Chan, Hyung Park, Jin, Seo, Hee, Rim Lee, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1005
container_issue 2
container_start_page 1001
container_title Medical physics (Lancaster)
container_volume 39
creator Hyeong Kim, Chan
Hyung Park, Jin
Seo, Hee
Rim Lee, Han
description Purpose: This paper describes a new gamma-ray imaging method, “gamma electron vertex imaging (GEVI),” which can be used for precise beam range verification in proton therapy. Methods: In GEVI imaging, the high-energy gammas from a source or nuclear interactions are first converted, by Compton scattering, to electrons, which subsequently are traced by hodoscopes to determine the location of the gamma source or the vertices of the nuclear interactions. The performance of GEVI imaging for use in-beam range verification was evaluated by Monte Carlo simulations employinggeant4 equipped with the QGSP_BIC_HP physics package. Results: Our simulation results show that GEVI imaging can determine the proton beam range very accurately, within 2–3 mm of error, even without any sophisticated analysis. The results were obtained under simplified conditions of monoenergetic pencil beams stopped in a homogeneous phantom and on the basis of the obtained results it is expected to achieve submillimeter accuracy in proton beam range measurement. Conclusions: If future experimental work confirms the simulated results presented in this paper, the use of GEVI imaging is expected to have a great potential in increasing the accuracy of proton beam range verification in a patient, resulting in significant improvement of treatment effectiveness by enabling tight conformation of radiation dose to the tumor volume and patient safety.
doi_str_mv 10.1118/1.3662890
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22098740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>921147380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5420-7f6d27a14eb3e530790427b07c1bace9b96342a602342d79925d2c8725b1f5ed3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOj4W_gEpuBCE6k3SNs1GkEFHYUQXunET0vR2jPRl2xmdf286DxFkXN3F-XLvyTmEHFO4oJTGl_SCRxGLJWyRAQsE9wMGcpsMAGTgswDCPbLftu8AEPEQdskeY5xBDHJAXke6KLSHOZquqUpvhk2HX54t9MSWE0-XqafrOrdGd9bJXeUlqAuv0eUEe9hma8mWXt1UXQ-9YaPr-SHZyXTe4tFqHpCX25vn4Z0_fhzdD6_HvgmdT19kUcqEpgEmHEMOQkLARALC0EQblImMeMB0BMyNVEjJwpSZWLAwoVmIKT8gp8u9VdtZ1RrboXkzVVm6LynmkohFAI46W1LO5McU204VtjWY57rEatoqySh10cU9ebIip0mBqaobl0YzV-vQHOAvgU-b4_xHp6D6NhRVqzbUw1M_HH-15Htvi7A2v1nUodZ1qEUdbsH5pgWzqvl1sE6z_-A_1_g3jDWrng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921147380</pqid></control><display><type>article</type><title>Gamma electron vertex imaging and application to beam range verification in proton therapy</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Hyeong Kim, Chan ; Hyung Park, Jin ; Seo, Hee ; Rim Lee, Han</creator><creatorcontrib>Hyeong Kim, Chan ; Hyung Park, Jin ; Seo, Hee ; Rim Lee, Han</creatorcontrib><description>Purpose: This paper describes a new gamma-ray imaging method, “gamma electron vertex imaging (GEVI),” which can be used for precise beam range verification in proton therapy. Methods: In GEVI imaging, the high-energy gammas from a source or nuclear interactions are first converted, by Compton scattering, to electrons, which subsequently are traced by hodoscopes to determine the location of the gamma source or the vertices of the nuclear interactions. The performance of GEVI imaging for use in-beam range verification was evaluated by Monte Carlo simulations employinggeant4 equipped with the QGSP_BIC_HP physics package. Results: Our simulation results show that GEVI imaging can determine the proton beam range very accurately, within 2–3 mm of error, even without any sophisticated analysis. The results were obtained under simplified conditions of monoenergetic pencil beams stopped in a homogeneous phantom and on the basis of the obtained results it is expected to achieve submillimeter accuracy in proton beam range measurement. Conclusions: If future experimental work confirms the simulated results presented in this paper, the use of GEVI imaging is expected to have a great potential in increasing the accuracy of proton beam range verification in a patient, resulting in significant improvement of treatment effectiveness by enabling tight conformation of radiation dose to the tumor volume and patient safety.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.3662890</identifier><identifier>PMID: 22320809</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>biomedical equipment ; biomedical measurement ; COMPTON EFFECT ; COMPUTERIZED SIMULATION ; Cosmic gamma ray sources ; Dosimetry ; Electrons ; gamma electron vertex imaging ; GAMMA RADIATION ; Gamma ray imaging ; Gamma Rays ; GAMMA SOURCES ; GAMMA SPECTROSCOPY ; gamma‐ray spectroscopy ; IMAGE PROCESSING ; Image reconstruction ; Imaging, Three-Dimensional - methods ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Measurement of nuclear or x‐radiation ; Measuring for diagnostic purposes; Identification of persons ; medical computing ; Medical image reconstruction ; Medical imaging ; MONTE CARLO METHOD ; Monte Carlo methods ; NEOPLASMS ; Nuclear interactions ; PATIENTS ; PHANTOMS ; POSITION SENSITIVE DETECTORS ; position sensitive particle detectors ; prompt gamma ; PROTON BEAMS ; proton therapy ; PROTONS ; Protons - therapeutic use ; Quality assurance equipment ; RADIATION DOSES ; radiation therapy ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiometry - methods ; RADIOTHERAPY ; Radiotherapy - methods ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, High-Energy - methods ; range verification ; Reproducibility of Results ; Sensitivity and Specificity ; Therapeutic applications, including brachytherapy ; Tracking and position‐sensitive detectors ; Tubes for determining the presence, intensity, density or energy of radiation or particles ; tumours ; VERIFICATION</subject><ispartof>Medical physics (Lancaster), 2012-02, Vol.39 (2), p.1001-1005</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2012 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5420-7f6d27a14eb3e530790427b07c1bace9b96342a602342d79925d2c8725b1f5ed3</citedby><cites>FETCH-LOGICAL-c5420-7f6d27a14eb3e530790427b07c1bace9b96342a602342d79925d2c8725b1f5ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.3662890$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.3662890$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22320809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22098740$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hyeong Kim, Chan</creatorcontrib><creatorcontrib>Hyung Park, Jin</creatorcontrib><creatorcontrib>Seo, Hee</creatorcontrib><creatorcontrib>Rim Lee, Han</creatorcontrib><title>Gamma electron vertex imaging and application to beam range verification in proton therapy</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose: This paper describes a new gamma-ray imaging method, “gamma electron vertex imaging (GEVI),” which can be used for precise beam range verification in proton therapy. Methods: In GEVI imaging, the high-energy gammas from a source or nuclear interactions are first converted, by Compton scattering, to electrons, which subsequently are traced by hodoscopes to determine the location of the gamma source or the vertices of the nuclear interactions. The performance of GEVI imaging for use in-beam range verification was evaluated by Monte Carlo simulations employinggeant4 equipped with the QGSP_BIC_HP physics package. Results: Our simulation results show that GEVI imaging can determine the proton beam range very accurately, within 2–3 mm of error, even without any sophisticated analysis. The results were obtained under simplified conditions of monoenergetic pencil beams stopped in a homogeneous phantom and on the basis of the obtained results it is expected to achieve submillimeter accuracy in proton beam range measurement. Conclusions: If future experimental work confirms the simulated results presented in this paper, the use of GEVI imaging is expected to have a great potential in increasing the accuracy of proton beam range verification in a patient, resulting in significant improvement of treatment effectiveness by enabling tight conformation of radiation dose to the tumor volume and patient safety.</description><subject>biomedical equipment</subject><subject>biomedical measurement</subject><subject>COMPTON EFFECT</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Cosmic gamma ray sources</subject><subject>Dosimetry</subject><subject>Electrons</subject><subject>gamma electron vertex imaging</subject><subject>GAMMA RADIATION</subject><subject>Gamma ray imaging</subject><subject>Gamma Rays</subject><subject>GAMMA SOURCES</subject><subject>GAMMA SPECTROSCOPY</subject><subject>gamma‐ray spectroscopy</subject><subject>IMAGE PROCESSING</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Measurement of nuclear or x‐radiation</subject><subject>Measuring for diagnostic purposes; Identification of persons</subject><subject>medical computing</subject><subject>Medical image reconstruction</subject><subject>Medical imaging</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo methods</subject><subject>NEOPLASMS</subject><subject>Nuclear interactions</subject><subject>PATIENTS</subject><subject>PHANTOMS</subject><subject>POSITION SENSITIVE DETECTORS</subject><subject>position sensitive particle detectors</subject><subject>prompt gamma</subject><subject>PROTON BEAMS</subject><subject>proton therapy</subject><subject>PROTONS</subject><subject>Protons - therapeutic use</subject><subject>Quality assurance equipment</subject><subject>RADIATION DOSES</subject><subject>radiation therapy</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiometry - methods</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy - methods</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, High-Energy - methods</subject><subject>range verification</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Therapeutic applications, including brachytherapy</subject><subject>Tracking and position‐sensitive detectors</subject><subject>Tubes for determining the presence, intensity, density or energy of radiation or particles</subject><subject>tumours</subject><subject>VERIFICATION</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLxDAUhYMoOj4W_gEpuBCE6k3SNs1GkEFHYUQXunET0vR2jPRl2xmdf286DxFkXN3F-XLvyTmEHFO4oJTGl_SCRxGLJWyRAQsE9wMGcpsMAGTgswDCPbLftu8AEPEQdskeY5xBDHJAXke6KLSHOZquqUpvhk2HX54t9MSWE0-XqafrOrdGd9bJXeUlqAuv0eUEe9hma8mWXt1UXQ-9YaPr-SHZyXTe4tFqHpCX25vn4Z0_fhzdD6_HvgmdT19kUcqEpgEmHEMOQkLARALC0EQblImMeMB0BMyNVEjJwpSZWLAwoVmIKT8gp8u9VdtZ1RrboXkzVVm6LynmkohFAI46W1LO5McU204VtjWY57rEatoqySh10cU9ebIip0mBqaobl0YzV-vQHOAvgU-b4_xHp6D6NhRVqzbUw1M_HH-15Htvi7A2v1nUodZ1qEUdbsH5pgWzqvl1sE6z_-A_1_g3jDWrng</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Hyeong Kim, Chan</creator><creator>Hyung Park, Jin</creator><creator>Seo, Hee</creator><creator>Rim Lee, Han</creator><general>American Association of Physicists in Medicine</general><scope>AJDQP</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201202</creationdate><title>Gamma electron vertex imaging and application to beam range verification in proton therapy</title><author>Hyeong Kim, Chan ; Hyung Park, Jin ; Seo, Hee ; Rim Lee, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5420-7f6d27a14eb3e530790427b07c1bace9b96342a602342d79925d2c8725b1f5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>biomedical equipment</topic><topic>biomedical measurement</topic><topic>COMPTON EFFECT</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Cosmic gamma ray sources</topic><topic>Dosimetry</topic><topic>Electrons</topic><topic>gamma electron vertex imaging</topic><topic>GAMMA RADIATION</topic><topic>Gamma ray imaging</topic><topic>Gamma Rays</topic><topic>GAMMA SOURCES</topic><topic>GAMMA SPECTROSCOPY</topic><topic>gamma‐ray spectroscopy</topic><topic>IMAGE PROCESSING</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Measurement of nuclear or x‐radiation</topic><topic>Measuring for diagnostic purposes; Identification of persons</topic><topic>medical computing</topic><topic>Medical image reconstruction</topic><topic>Medical imaging</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo methods</topic><topic>NEOPLASMS</topic><topic>Nuclear interactions</topic><topic>PATIENTS</topic><topic>PHANTOMS</topic><topic>POSITION SENSITIVE DETECTORS</topic><topic>position sensitive particle detectors</topic><topic>prompt gamma</topic><topic>PROTON BEAMS</topic><topic>proton therapy</topic><topic>PROTONS</topic><topic>Protons - therapeutic use</topic><topic>Quality assurance equipment</topic><topic>RADIATION DOSES</topic><topic>radiation therapy</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiometry - methods</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy - methods</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, High-Energy - methods</topic><topic>range verification</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Therapeutic applications, including brachytherapy</topic><topic>Tracking and position‐sensitive detectors</topic><topic>Tubes for determining the presence, intensity, density or energy of radiation or particles</topic><topic>tumours</topic><topic>VERIFICATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyeong Kim, Chan</creatorcontrib><creatorcontrib>Hyung Park, Jin</creatorcontrib><creatorcontrib>Seo, Hee</creatorcontrib><creatorcontrib>Rim Lee, Han</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyeong Kim, Chan</au><au>Hyung Park, Jin</au><au>Seo, Hee</au><au>Rim Lee, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gamma electron vertex imaging and application to beam range verification in proton therapy</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2012-02</date><risdate>2012</risdate><volume>39</volume><issue>2</issue><spage>1001</spage><epage>1005</epage><pages>1001-1005</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Purpose: This paper describes a new gamma-ray imaging method, “gamma electron vertex imaging (GEVI),” which can be used for precise beam range verification in proton therapy. Methods: In GEVI imaging, the high-energy gammas from a source or nuclear interactions are first converted, by Compton scattering, to electrons, which subsequently are traced by hodoscopes to determine the location of the gamma source or the vertices of the nuclear interactions. The performance of GEVI imaging for use in-beam range verification was evaluated by Monte Carlo simulations employinggeant4 equipped with the QGSP_BIC_HP physics package. Results: Our simulation results show that GEVI imaging can determine the proton beam range very accurately, within 2–3 mm of error, even without any sophisticated analysis. The results were obtained under simplified conditions of monoenergetic pencil beams stopped in a homogeneous phantom and on the basis of the obtained results it is expected to achieve submillimeter accuracy in proton beam range measurement. Conclusions: If future experimental work confirms the simulated results presented in this paper, the use of GEVI imaging is expected to have a great potential in increasing the accuracy of proton beam range verification in a patient, resulting in significant improvement of treatment effectiveness by enabling tight conformation of radiation dose to the tumor volume and patient safety.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>22320809</pmid><doi>10.1118/1.3662890</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2012-02, Vol.39 (2), p.1001-1005
issn 0094-2405
2473-4209
language eng
recordid cdi_osti_scitechconnect_22098740
source MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection
subjects biomedical equipment
biomedical measurement
COMPTON EFFECT
COMPUTERIZED SIMULATION
Cosmic gamma ray sources
Dosimetry
Electrons
gamma electron vertex imaging
GAMMA RADIATION
Gamma ray imaging
Gamma Rays
GAMMA SOURCES
GAMMA SPECTROSCOPY
gamma‐ray spectroscopy
IMAGE PROCESSING
Image reconstruction
Imaging, Three-Dimensional - methods
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Measurement of nuclear or x‐radiation
Measuring for diagnostic purposes
Identification of persons
medical computing
Medical image reconstruction
Medical imaging
MONTE CARLO METHOD
Monte Carlo methods
NEOPLASMS
Nuclear interactions
PATIENTS
PHANTOMS
POSITION SENSITIVE DETECTORS
position sensitive particle detectors
prompt gamma
PROTON BEAMS
proton therapy
PROTONS
Protons - therapeutic use
Quality assurance equipment
RADIATION DOSES
radiation therapy
RADIOLOGY AND NUCLEAR MEDICINE
Radiometry - methods
RADIOTHERAPY
Radiotherapy - methods
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, High-Energy - methods
range verification
Reproducibility of Results
Sensitivity and Specificity
Therapeutic applications, including brachytherapy
Tracking and position‐sensitive detectors
Tubes for determining the presence, intensity, density or energy of radiation or particles
tumours
VERIFICATION
title Gamma electron vertex imaging and application to beam range verification in proton therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gamma%20electron%20vertex%20imaging%20and%20application%20to%20beam%20range%20verification%20in%20proton%20therapy&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Hyeong%20Kim,%20Chan&rft.date=2012-02&rft.volume=39&rft.issue=2&rft.spage=1001&rft.epage=1005&rft.pages=1001-1005&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.3662890&rft_dat=%3Cproquest_osti_%3E921147380%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921147380&rft_id=info:pmid/22320809&rfr_iscdi=true