Gamma electron vertex imaging and application to beam range verification in proton therapy
Purpose: This paper describes a new gamma-ray imaging method, “gamma electron vertex imaging (GEVI),” which can be used for precise beam range verification in proton therapy. Methods: In GEVI imaging, the high-energy gammas from a source or nuclear interactions are first converted, by Compton scatte...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2012-02, Vol.39 (2), p.1001-1005 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1005 |
---|---|
container_issue | 2 |
container_start_page | 1001 |
container_title | Medical physics (Lancaster) |
container_volume | 39 |
creator | Hyeong Kim, Chan Hyung Park, Jin Seo, Hee Rim Lee, Han |
description | Purpose:
This paper describes a new gamma-ray imaging method, “gamma electron vertex imaging
(GEVI),” which can be used for precise beam range verification in proton therapy.
Methods:
In GEVI imaging, the high-energy gammas from a source or nuclear interactions are
first converted, by Compton scattering, to electrons, which subsequently are traced by
hodoscopes to determine the location of the gamma source or the vertices of the
nuclear
interactions. The performance of GEVI imaging
for use in-beam range verification was evaluated by Monte Carlo simulations
employinggeant4 equipped with the QGSP_BIC_HP physics package.
Results:
Our simulation results show that GEVI imaging can determine the
proton beam
range very accurately, within 2–3 mm of error, even without any sophisticated analysis.
The results were obtained under simplified conditions of monoenergetic pencil beams
stopped in a homogeneous phantom and on the basis of the obtained results it is expected
to achieve submillimeter accuracy in proton beam range measurement.
Conclusions:
If future experimental work confirms the simulated results presented in this paper, the
use of GEVI imaging is expected to have a great potential in increasing the
accuracy of proton beam range verification in a patient, resulting in significant
improvement of treatment effectiveness by enabling tight conformation of radiation
dose to the
tumor volume and patient safety. |
doi_str_mv | 10.1118/1.3662890 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22098740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>921147380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5420-7f6d27a14eb3e530790427b07c1bace9b96342a602342d79925d2c8725b1f5ed3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOj4W_gEpuBCE6k3SNs1GkEFHYUQXunET0vR2jPRl2xmdf286DxFkXN3F-XLvyTmEHFO4oJTGl_SCRxGLJWyRAQsE9wMGcpsMAGTgswDCPbLftu8AEPEQdskeY5xBDHJAXke6KLSHOZquqUpvhk2HX54t9MSWE0-XqafrOrdGd9bJXeUlqAuv0eUEe9hma8mWXt1UXQ-9YaPr-SHZyXTe4tFqHpCX25vn4Z0_fhzdD6_HvgmdT19kUcqEpgEmHEMOQkLARALC0EQblImMeMB0BMyNVEjJwpSZWLAwoVmIKT8gp8u9VdtZ1RrboXkzVVm6LynmkohFAI46W1LO5McU204VtjWY57rEatoqySh10cU9ebIip0mBqaobl0YzV-vQHOAvgU-b4_xHp6D6NhRVqzbUw1M_HH-15Htvi7A2v1nUodZ1qEUdbsH5pgWzqvl1sE6z_-A_1_g3jDWrng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921147380</pqid></control><display><type>article</type><title>Gamma electron vertex imaging and application to beam range verification in proton therapy</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Hyeong Kim, Chan ; Hyung Park, Jin ; Seo, Hee ; Rim Lee, Han</creator><creatorcontrib>Hyeong Kim, Chan ; Hyung Park, Jin ; Seo, Hee ; Rim Lee, Han</creatorcontrib><description>Purpose:
This paper describes a new gamma-ray imaging method, “gamma electron vertex imaging
(GEVI),” which can be used for precise beam range verification in proton therapy.
Methods:
In GEVI imaging, the high-energy gammas from a source or nuclear interactions are
first converted, by Compton scattering, to electrons, which subsequently are traced by
hodoscopes to determine the location of the gamma source or the vertices of the
nuclear
interactions. The performance of GEVI imaging
for use in-beam range verification was evaluated by Monte Carlo simulations
employinggeant4 equipped with the QGSP_BIC_HP physics package.
Results:
Our simulation results show that GEVI imaging can determine the
proton beam
range very accurately, within 2–3 mm of error, even without any sophisticated analysis.
The results were obtained under simplified conditions of monoenergetic pencil beams
stopped in a homogeneous phantom and on the basis of the obtained results it is expected
to achieve submillimeter accuracy in proton beam range measurement.
Conclusions:
If future experimental work confirms the simulated results presented in this paper, the
use of GEVI imaging is expected to have a great potential in increasing the
accuracy of proton beam range verification in a patient, resulting in significant
improvement of treatment effectiveness by enabling tight conformation of radiation
dose to the
tumor volume and patient safety.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.3662890</identifier><identifier>PMID: 22320809</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>biomedical equipment ; biomedical measurement ; COMPTON EFFECT ; COMPUTERIZED SIMULATION ; Cosmic gamma ray sources ; Dosimetry ; Electrons ; gamma electron vertex imaging ; GAMMA RADIATION ; Gamma ray imaging ; Gamma Rays ; GAMMA SOURCES ; GAMMA SPECTROSCOPY ; gamma‐ray spectroscopy ; IMAGE PROCESSING ; Image reconstruction ; Imaging, Three-Dimensional - methods ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Measurement of nuclear or x‐radiation ; Measuring for diagnostic purposes; Identification of persons ; medical computing ; Medical image reconstruction ; Medical imaging ; MONTE CARLO METHOD ; Monte Carlo methods ; NEOPLASMS ; Nuclear interactions ; PATIENTS ; PHANTOMS ; POSITION SENSITIVE DETECTORS ; position sensitive particle detectors ; prompt gamma ; PROTON BEAMS ; proton therapy ; PROTONS ; Protons - therapeutic use ; Quality assurance equipment ; RADIATION DOSES ; radiation therapy ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiometry - methods ; RADIOTHERAPY ; Radiotherapy - methods ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy, High-Energy - methods ; range verification ; Reproducibility of Results ; Sensitivity and Specificity ; Therapeutic applications, including brachytherapy ; Tracking and position‐sensitive detectors ; Tubes for determining the presence, intensity, density or energy of radiation or particles ; tumours ; VERIFICATION</subject><ispartof>Medical physics (Lancaster), 2012-02, Vol.39 (2), p.1001-1005</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2012 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5420-7f6d27a14eb3e530790427b07c1bace9b96342a602342d79925d2c8725b1f5ed3</citedby><cites>FETCH-LOGICAL-c5420-7f6d27a14eb3e530790427b07c1bace9b96342a602342d79925d2c8725b1f5ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.3662890$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.3662890$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22320809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22098740$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hyeong Kim, Chan</creatorcontrib><creatorcontrib>Hyung Park, Jin</creatorcontrib><creatorcontrib>Seo, Hee</creatorcontrib><creatorcontrib>Rim Lee, Han</creatorcontrib><title>Gamma electron vertex imaging and application to beam range verification in proton therapy</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose:
This paper describes a new gamma-ray imaging method, “gamma electron vertex imaging
(GEVI),” which can be used for precise beam range verification in proton therapy.
Methods:
In GEVI imaging, the high-energy gammas from a source or nuclear interactions are
first converted, by Compton scattering, to electrons, which subsequently are traced by
hodoscopes to determine the location of the gamma source or the vertices of the
nuclear
interactions. The performance of GEVI imaging
for use in-beam range verification was evaluated by Monte Carlo simulations
employinggeant4 equipped with the QGSP_BIC_HP physics package.
Results:
Our simulation results show that GEVI imaging can determine the
proton beam
range very accurately, within 2–3 mm of error, even without any sophisticated analysis.
The results were obtained under simplified conditions of monoenergetic pencil beams
stopped in a homogeneous phantom and on the basis of the obtained results it is expected
to achieve submillimeter accuracy in proton beam range measurement.
Conclusions:
If future experimental work confirms the simulated results presented in this paper, the
use of GEVI imaging is expected to have a great potential in increasing the
accuracy of proton beam range verification in a patient, resulting in significant
improvement of treatment effectiveness by enabling tight conformation of radiation
dose to the
tumor volume and patient safety.</description><subject>biomedical equipment</subject><subject>biomedical measurement</subject><subject>COMPTON EFFECT</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Cosmic gamma ray sources</subject><subject>Dosimetry</subject><subject>Electrons</subject><subject>gamma electron vertex imaging</subject><subject>GAMMA RADIATION</subject><subject>Gamma ray imaging</subject><subject>Gamma Rays</subject><subject>GAMMA SOURCES</subject><subject>GAMMA SPECTROSCOPY</subject><subject>gamma‐ray spectroscopy</subject><subject>IMAGE PROCESSING</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Measurement of nuclear or x‐radiation</subject><subject>Measuring for diagnostic purposes; Identification of persons</subject><subject>medical computing</subject><subject>Medical image reconstruction</subject><subject>Medical imaging</subject><subject>MONTE CARLO METHOD</subject><subject>Monte Carlo methods</subject><subject>NEOPLASMS</subject><subject>Nuclear interactions</subject><subject>PATIENTS</subject><subject>PHANTOMS</subject><subject>POSITION SENSITIVE DETECTORS</subject><subject>position sensitive particle detectors</subject><subject>prompt gamma</subject><subject>PROTON BEAMS</subject><subject>proton therapy</subject><subject>PROTONS</subject><subject>Protons - therapeutic use</subject><subject>Quality assurance equipment</subject><subject>RADIATION DOSES</subject><subject>radiation therapy</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiometry - methods</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy - methods</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy, High-Energy - methods</subject><subject>range verification</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Therapeutic applications, including brachytherapy</subject><subject>Tracking and position‐sensitive detectors</subject><subject>Tubes for determining the presence, intensity, density or energy of radiation or particles</subject><subject>tumours</subject><subject>VERIFICATION</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLxDAUhYMoOj4W_gEpuBCE6k3SNs1GkEFHYUQXunET0vR2jPRl2xmdf286DxFkXN3F-XLvyTmEHFO4oJTGl_SCRxGLJWyRAQsE9wMGcpsMAGTgswDCPbLftu8AEPEQdskeY5xBDHJAXke6KLSHOZquqUpvhk2HX54t9MSWE0-XqafrOrdGd9bJXeUlqAuv0eUEe9hma8mWXt1UXQ-9YaPr-SHZyXTe4tFqHpCX25vn4Z0_fhzdD6_HvgmdT19kUcqEpgEmHEMOQkLARALC0EQblImMeMB0BMyNVEjJwpSZWLAwoVmIKT8gp8u9VdtZ1RrboXkzVVm6LynmkohFAI46W1LO5McU204VtjWY57rEatoqySh10cU9ebIip0mBqaobl0YzV-vQHOAvgU-b4_xHp6D6NhRVqzbUw1M_HH-15Htvi7A2v1nUodZ1qEUdbsH5pgWzqvl1sE6z_-A_1_g3jDWrng</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Hyeong Kim, Chan</creator><creator>Hyung Park, Jin</creator><creator>Seo, Hee</creator><creator>Rim Lee, Han</creator><general>American Association of Physicists in Medicine</general><scope>AJDQP</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201202</creationdate><title>Gamma electron vertex imaging and application to beam range verification in proton therapy</title><author>Hyeong Kim, Chan ; Hyung Park, Jin ; Seo, Hee ; Rim Lee, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5420-7f6d27a14eb3e530790427b07c1bace9b96342a602342d79925d2c8725b1f5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>biomedical equipment</topic><topic>biomedical measurement</topic><topic>COMPTON EFFECT</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Cosmic gamma ray sources</topic><topic>Dosimetry</topic><topic>Electrons</topic><topic>gamma electron vertex imaging</topic><topic>GAMMA RADIATION</topic><topic>Gamma ray imaging</topic><topic>Gamma Rays</topic><topic>GAMMA SOURCES</topic><topic>GAMMA SPECTROSCOPY</topic><topic>gamma‐ray spectroscopy</topic><topic>IMAGE PROCESSING</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Measurement of nuclear or x‐radiation</topic><topic>Measuring for diagnostic purposes; Identification of persons</topic><topic>medical computing</topic><topic>Medical image reconstruction</topic><topic>Medical imaging</topic><topic>MONTE CARLO METHOD</topic><topic>Monte Carlo methods</topic><topic>NEOPLASMS</topic><topic>Nuclear interactions</topic><topic>PATIENTS</topic><topic>PHANTOMS</topic><topic>POSITION SENSITIVE DETECTORS</topic><topic>position sensitive particle detectors</topic><topic>prompt gamma</topic><topic>PROTON BEAMS</topic><topic>proton therapy</topic><topic>PROTONS</topic><topic>Protons - therapeutic use</topic><topic>Quality assurance equipment</topic><topic>RADIATION DOSES</topic><topic>radiation therapy</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiometry - methods</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy - methods</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy, High-Energy - methods</topic><topic>range verification</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Therapeutic applications, including brachytherapy</topic><topic>Tracking and position‐sensitive detectors</topic><topic>Tubes for determining the presence, intensity, density or energy of radiation or particles</topic><topic>tumours</topic><topic>VERIFICATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyeong Kim, Chan</creatorcontrib><creatorcontrib>Hyung Park, Jin</creatorcontrib><creatorcontrib>Seo, Hee</creatorcontrib><creatorcontrib>Rim Lee, Han</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyeong Kim, Chan</au><au>Hyung Park, Jin</au><au>Seo, Hee</au><au>Rim Lee, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gamma electron vertex imaging and application to beam range verification in proton therapy</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2012-02</date><risdate>2012</risdate><volume>39</volume><issue>2</issue><spage>1001</spage><epage>1005</epage><pages>1001-1005</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>Purpose:
This paper describes a new gamma-ray imaging method, “gamma electron vertex imaging
(GEVI),” which can be used for precise beam range verification in proton therapy.
Methods:
In GEVI imaging, the high-energy gammas from a source or nuclear interactions are
first converted, by Compton scattering, to electrons, which subsequently are traced by
hodoscopes to determine the location of the gamma source or the vertices of the
nuclear
interactions. The performance of GEVI imaging
for use in-beam range verification was evaluated by Monte Carlo simulations
employinggeant4 equipped with the QGSP_BIC_HP physics package.
Results:
Our simulation results show that GEVI imaging can determine the
proton beam
range very accurately, within 2–3 mm of error, even without any sophisticated analysis.
The results were obtained under simplified conditions of monoenergetic pencil beams
stopped in a homogeneous phantom and on the basis of the obtained results it is expected
to achieve submillimeter accuracy in proton beam range measurement.
Conclusions:
If future experimental work confirms the simulated results presented in this paper, the
use of GEVI imaging is expected to have a great potential in increasing the
accuracy of proton beam range verification in a patient, resulting in significant
improvement of treatment effectiveness by enabling tight conformation of radiation
dose to the
tumor volume and patient safety.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>22320809</pmid><doi>10.1118/1.3662890</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2012-02, Vol.39 (2), p.1001-1005 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_osti_scitechconnect_22098740 |
source | MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | biomedical equipment biomedical measurement COMPTON EFFECT COMPUTERIZED SIMULATION Cosmic gamma ray sources Dosimetry Electrons gamma electron vertex imaging GAMMA RADIATION Gamma ray imaging Gamma Rays GAMMA SOURCES GAMMA SPECTROSCOPY gamma‐ray spectroscopy IMAGE PROCESSING Image reconstruction Imaging, Three-Dimensional - methods INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Measurement of nuclear or x‐radiation Measuring for diagnostic purposes Identification of persons medical computing Medical image reconstruction Medical imaging MONTE CARLO METHOD Monte Carlo methods NEOPLASMS Nuclear interactions PATIENTS PHANTOMS POSITION SENSITIVE DETECTORS position sensitive particle detectors prompt gamma PROTON BEAMS proton therapy PROTONS Protons - therapeutic use Quality assurance equipment RADIATION DOSES radiation therapy RADIOLOGY AND NUCLEAR MEDICINE Radiometry - methods RADIOTHERAPY Radiotherapy - methods Radiotherapy Planning, Computer-Assisted - methods Radiotherapy, High-Energy - methods range verification Reproducibility of Results Sensitivity and Specificity Therapeutic applications, including brachytherapy Tracking and position‐sensitive detectors Tubes for determining the presence, intensity, density or energy of radiation or particles tumours VERIFICATION |
title | Gamma electron vertex imaging and application to beam range verification in proton therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gamma%20electron%20vertex%20imaging%20and%20application%20to%20beam%20range%20verification%20in%20proton%20therapy&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Hyeong%20Kim,%20Chan&rft.date=2012-02&rft.volume=39&rft.issue=2&rft.spage=1001&rft.epage=1005&rft.pages=1001-1005&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.3662890&rft_dat=%3Cproquest_osti_%3E921147380%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921147380&rft_id=info:pmid/22320809&rfr_iscdi=true |