Transition from order to chaos, and density limit, in magnetized plasmas

It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2012-09, Vol.22 (3), p.033124-033124
Hauptverfasser: Carati, A., Zuin, M., Maiocchi, A., Marino, M., Martines, E., Galgani, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 033124
container_issue 3
container_start_page 033124
container_title Chaos (Woodbury, N.Y.)
container_volume 22
creator Carati, A.
Zuin, M.
Maiocchi, A.
Marino, M.
Martines, E.
Galgani, L.
description It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the electrons being unable to perform even one gyration, so that a breakdown should occur, with complete loss of confinement. The estimate is obtained by the methods of perturbation theory, taking as perturbing force acting on each electron that due to the so–called microfield, i.e., the electric field produced by all the other charges. We first obtain a general relation for the threshold, which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with neutralizing background, we obtain a definite formula for the threshold, which corresponds to a density limit increasing as the square of the imposed magnetic field. Such a theoretical density limit is found to fit pretty well the empirical data for collapses of fusion machines.
doi_str_mv 10.1063/1.4745851
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22093715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506353089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-5daa329ea19d1d379a6be47f7d15557ba3cce2577b02069092e866bb1f4a89683</originalsourceid><addsrcrecordid>eNqF0U1LwzAYB_Agis6Xg19AAl5U1pmXJmmPMtQJAy_zHNIk1UjbzCQT9NPbsjkPgp6Sw4__k_wfAE4xmmDE6TWe5CJnBcM7YIRRUWaCF2R3uLM8wwyhA3AY4ytCCBPK9sEBoYignNMRmC2C6qJLznewDr6FPhgbYPJQvygfx1B1Bho7kA_YuNalMXQdbNVzZ5P7tAYuGxVbFY_BXq2aaE825xF4urtdTGfZ_PH-YXozz3TOcMqYUYqS0ipcGmyoKBWvbC5qYTBjTFSKam0JE6LqX8hLVBJbcF5VuM5VUfKCHoHzda6PycmoXbL6RfuuszpJQlBJBWa9ulirZfBvKxuTbF3UtmlUZ_0qyr4UThntu_qfogIXIqeE9_RyTXXwMQZby2VwrQofPZLDJiSWm0309mwTu6paa7byu_oeXK3B8Ac1LGBr3n34SZJLU_-Ff4_-AiMfnJ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1081874326</pqid></control><display><type>article</type><title>Transition from order to chaos, and density limit, in magnetized plasmas</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Carati, A. ; Zuin, M. ; Maiocchi, A. ; Marino, M. ; Martines, E. ; Galgani, L.</creator><creatorcontrib>Carati, A. ; Zuin, M. ; Maiocchi, A. ; Marino, M. ; Martines, E. ; Galgani, L.</creatorcontrib><description>It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the electrons being unable to perform even one gyration, so that a breakdown should occur, with complete loss of confinement. The estimate is obtained by the methods of perturbation theory, taking as perturbing force acting on each electron that due to the so–called microfield, i.e., the electric field produced by all the other charges. We first obtain a general relation for the threshold, which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with neutralizing background, we obtain a definite formula for the threshold, which corresponds to a density limit increasing as the square of the imposed magnetic field. Such a theoretical density limit is found to fit pretty well the empirical data for collapses of fusion machines.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4745851</identifier><identifier>PMID: 23020463</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; BREAKDOWN ; CHAOS THEORY ; CHARGED PARTICLES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DENSITY ; ELECTRIC FIELDS ; FLUCTUATIONS ; MAGNETIC FIELDS ; PERTURBATION THEORY ; PLASMA CONFINEMENT ; POINT CHARGE</subject><ispartof>Chaos (Woodbury, N.Y.), 2012-09, Vol.22 (3), p.033124-033124</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-5daa329ea19d1d379a6be47f7d15557ba3cce2577b02069092e866bb1f4a89683</citedby><cites>FETCH-LOGICAL-c451t-5daa329ea19d1d379a6be47f7d15557ba3cce2577b02069092e866bb1f4a89683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23020463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22093715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carati, A.</creatorcontrib><creatorcontrib>Zuin, M.</creatorcontrib><creatorcontrib>Maiocchi, A.</creatorcontrib><creatorcontrib>Marino, M.</creatorcontrib><creatorcontrib>Martines, E.</creatorcontrib><creatorcontrib>Galgani, L.</creatorcontrib><title>Transition from order to chaos, and density limit, in magnetized plasmas</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the electrons being unable to perform even one gyration, so that a breakdown should occur, with complete loss of confinement. The estimate is obtained by the methods of perturbation theory, taking as perturbing force acting on each electron that due to the so–called microfield, i.e., the electric field produced by all the other charges. We first obtain a general relation for the threshold, which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with neutralizing background, we obtain a definite formula for the threshold, which corresponds to a density limit increasing as the square of the imposed magnetic field. Such a theoretical density limit is found to fit pretty well the empirical data for collapses of fusion machines.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>BREAKDOWN</subject><subject>CHAOS THEORY</subject><subject>CHARGED PARTICLES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DENSITY</subject><subject>ELECTRIC FIELDS</subject><subject>FLUCTUATIONS</subject><subject>MAGNETIC FIELDS</subject><subject>PERTURBATION THEORY</subject><subject>PLASMA CONFINEMENT</subject><subject>POINT CHARGE</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LwzAYB_Agis6Xg19AAl5U1pmXJmmPMtQJAy_zHNIk1UjbzCQT9NPbsjkPgp6Sw4__k_wfAE4xmmDE6TWe5CJnBcM7YIRRUWaCF2R3uLM8wwyhA3AY4ytCCBPK9sEBoYignNMRmC2C6qJLznewDr6FPhgbYPJQvygfx1B1Bho7kA_YuNalMXQdbNVzZ5P7tAYuGxVbFY_BXq2aaE825xF4urtdTGfZ_PH-YXozz3TOcMqYUYqS0ipcGmyoKBWvbC5qYTBjTFSKam0JE6LqX8hLVBJbcF5VuM5VUfKCHoHzda6PycmoXbL6RfuuszpJQlBJBWa9ulirZfBvKxuTbF3UtmlUZ_0qyr4UThntu_qfogIXIqeE9_RyTXXwMQZby2VwrQofPZLDJiSWm0309mwTu6paa7byu_oeXK3B8Ac1LGBr3n34SZJLU_-Ff4_-AiMfnJ0</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Carati, A.</creator><creator>Zuin, M.</creator><creator>Maiocchi, A.</creator><creator>Marino, M.</creator><creator>Martines, E.</creator><creator>Galgani, L.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20120901</creationdate><title>Transition from order to chaos, and density limit, in magnetized plasmas</title><author>Carati, A. ; Zuin, M. ; Maiocchi, A. ; Marino, M. ; Martines, E. ; Galgani, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-5daa329ea19d1d379a6be47f7d15557ba3cce2577b02069092e866bb1f4a89683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>BREAKDOWN</topic><topic>CHAOS THEORY</topic><topic>CHARGED PARTICLES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DENSITY</topic><topic>ELECTRIC FIELDS</topic><topic>FLUCTUATIONS</topic><topic>MAGNETIC FIELDS</topic><topic>PERTURBATION THEORY</topic><topic>PLASMA CONFINEMENT</topic><topic>POINT CHARGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carati, A.</creatorcontrib><creatorcontrib>Zuin, M.</creatorcontrib><creatorcontrib>Maiocchi, A.</creatorcontrib><creatorcontrib>Marino, M.</creatorcontrib><creatorcontrib>Martines, E.</creatorcontrib><creatorcontrib>Galgani, L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carati, A.</au><au>Zuin, M.</au><au>Maiocchi, A.</au><au>Marino, M.</au><au>Martines, E.</au><au>Galgani, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition from order to chaos, and density limit, in magnetized plasmas</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>22</volume><issue>3</issue><spage>033124</spage><epage>033124</epage><pages>033124-033124</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the electrons being unable to perform even one gyration, so that a breakdown should occur, with complete loss of confinement. The estimate is obtained by the methods of perturbation theory, taking as perturbing force acting on each electron that due to the so–called microfield, i.e., the electric field produced by all the other charges. We first obtain a general relation for the threshold, which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with neutralizing background, we obtain a definite formula for the threshold, which corresponds to a density limit increasing as the square of the imposed magnetic field. Such a theoretical density limit is found to fit pretty well the empirical data for collapses of fusion machines.</abstract><cop>United States</cop><pmid>23020463</pmid><doi>10.1063/1.4745851</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2012-09, Vol.22 (3), p.033124-033124
issn 1054-1500
1089-7682
language eng
recordid cdi_osti_scitechconnect_22093715
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
BREAKDOWN
CHAOS THEORY
CHARGED PARTICLES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DENSITY
ELECTRIC FIELDS
FLUCTUATIONS
MAGNETIC FIELDS
PERTURBATION THEORY
PLASMA CONFINEMENT
POINT CHARGE
title Transition from order to chaos, and density limit, in magnetized plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20from%20order%20to%20chaos,%20and%20density%20limit,%20in%20magnetized%20plasmas&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Carati,%20A.&rft.date=2012-09-01&rft.volume=22&rft.issue=3&rft.spage=033124&rft.epage=033124&rft.pages=033124-033124&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4745851&rft_dat=%3Cproquest_osti_%3E1506353089%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1081874326&rft_id=info:pmid/23020463&rfr_iscdi=true