Transition from order to chaos, and density limit, in magnetized plasmas
It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, w...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2012-09, Vol.22 (3), p.033124-033124 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 033124 |
---|---|
container_issue | 3 |
container_start_page | 033124 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 22 |
creator | Carati, A. Zuin, M. Maiocchi, A. Marino, M. Martines, E. Galgani, L. |
description | It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the electrons being unable to perform even one gyration, so that a breakdown should occur, with complete loss of confinement. The estimate is obtained by the methods of perturbation theory, taking as perturbing force acting on each electron that due to the so–called microfield, i.e., the electric field produced by all the other charges. We first obtain a general relation for the threshold, which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with neutralizing background, we obtain a definite formula for the threshold, which corresponds to a density limit increasing as the square of the imposed magnetic field. Such a theoretical density limit is found to fit pretty well the empirical data for collapses of fusion machines. |
doi_str_mv | 10.1063/1.4745851 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22093715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506353089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-5daa329ea19d1d379a6be47f7d15557ba3cce2577b02069092e866bb1f4a89683</originalsourceid><addsrcrecordid>eNqF0U1LwzAYB_Agis6Xg19AAl5U1pmXJmmPMtQJAy_zHNIk1UjbzCQT9NPbsjkPgp6Sw4__k_wfAE4xmmDE6TWe5CJnBcM7YIRRUWaCF2R3uLM8wwyhA3AY4ytCCBPK9sEBoYignNMRmC2C6qJLznewDr6FPhgbYPJQvygfx1B1Bho7kA_YuNalMXQdbNVzZ5P7tAYuGxVbFY_BXq2aaE825xF4urtdTGfZ_PH-YXozz3TOcMqYUYqS0ipcGmyoKBWvbC5qYTBjTFSKam0JE6LqX8hLVBJbcF5VuM5VUfKCHoHzda6PycmoXbL6RfuuszpJQlBJBWa9ulirZfBvKxuTbF3UtmlUZ_0qyr4UThntu_qfogIXIqeE9_RyTXXwMQZby2VwrQofPZLDJiSWm0309mwTu6paa7byu_oeXK3B8Ac1LGBr3n34SZJLU_-Ff4_-AiMfnJ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1081874326</pqid></control><display><type>article</type><title>Transition from order to chaos, and density limit, in magnetized plasmas</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Carati, A. ; Zuin, M. ; Maiocchi, A. ; Marino, M. ; Martines, E. ; Galgani, L.</creator><creatorcontrib>Carati, A. ; Zuin, M. ; Maiocchi, A. ; Marino, M. ; Martines, E. ; Galgani, L.</creatorcontrib><description>It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the electrons being unable to perform even one gyration, so that a breakdown should occur, with complete loss of confinement. The estimate is obtained by the methods of perturbation theory, taking as perturbing force acting on each electron that due to the so–called microfield, i.e., the electric field produced by all the other charges. We first obtain a general relation for the threshold, which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with neutralizing background, we obtain a definite formula for the threshold, which corresponds to a density limit increasing as the square of the imposed magnetic field. Such a theoretical density limit is found to fit pretty well the empirical data for collapses of fusion machines.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.4745851</identifier><identifier>PMID: 23020463</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; BREAKDOWN ; CHAOS THEORY ; CHARGED PARTICLES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DENSITY ; ELECTRIC FIELDS ; FLUCTUATIONS ; MAGNETIC FIELDS ; PERTURBATION THEORY ; PLASMA CONFINEMENT ; POINT CHARGE</subject><ispartof>Chaos (Woodbury, N.Y.), 2012-09, Vol.22 (3), p.033124-033124</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-5daa329ea19d1d379a6be47f7d15557ba3cce2577b02069092e866bb1f4a89683</citedby><cites>FETCH-LOGICAL-c451t-5daa329ea19d1d379a6be47f7d15557ba3cce2577b02069092e866bb1f4a89683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23020463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22093715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carati, A.</creatorcontrib><creatorcontrib>Zuin, M.</creatorcontrib><creatorcontrib>Maiocchi, A.</creatorcontrib><creatorcontrib>Marino, M.</creatorcontrib><creatorcontrib>Martines, E.</creatorcontrib><creatorcontrib>Galgani, L.</creatorcontrib><title>Transition from order to chaos, and density limit, in magnetized plasmas</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the electrons being unable to perform even one gyration, so that a breakdown should occur, with complete loss of confinement. The estimate is obtained by the methods of perturbation theory, taking as perturbing force acting on each electron that due to the so–called microfield, i.e., the electric field produced by all the other charges. We first obtain a general relation for the threshold, which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with neutralizing background, we obtain a definite formula for the threshold, which corresponds to a density limit increasing as the square of the imposed magnetic field. Such a theoretical density limit is found to fit pretty well the empirical data for collapses of fusion machines.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>BREAKDOWN</subject><subject>CHAOS THEORY</subject><subject>CHARGED PARTICLES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DENSITY</subject><subject>ELECTRIC FIELDS</subject><subject>FLUCTUATIONS</subject><subject>MAGNETIC FIELDS</subject><subject>PERTURBATION THEORY</subject><subject>PLASMA CONFINEMENT</subject><subject>POINT CHARGE</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LwzAYB_Agis6Xg19AAl5U1pmXJmmPMtQJAy_zHNIk1UjbzCQT9NPbsjkPgp6Sw4__k_wfAE4xmmDE6TWe5CJnBcM7YIRRUWaCF2R3uLM8wwyhA3AY4ytCCBPK9sEBoYignNMRmC2C6qJLznewDr6FPhgbYPJQvygfx1B1Bho7kA_YuNalMXQdbNVzZ5P7tAYuGxVbFY_BXq2aaE825xF4urtdTGfZ_PH-YXozz3TOcMqYUYqS0ipcGmyoKBWvbC5qYTBjTFSKam0JE6LqX8hLVBJbcF5VuM5VUfKCHoHzda6PycmoXbL6RfuuszpJQlBJBWa9ulirZfBvKxuTbF3UtmlUZ_0qyr4UThntu_qfogIXIqeE9_RyTXXwMQZby2VwrQofPZLDJiSWm0309mwTu6paa7byu_oeXK3B8Ac1LGBr3n34SZJLU_-Ff4_-AiMfnJ0</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Carati, A.</creator><creator>Zuin, M.</creator><creator>Maiocchi, A.</creator><creator>Marino, M.</creator><creator>Martines, E.</creator><creator>Galgani, L.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20120901</creationdate><title>Transition from order to chaos, and density limit, in magnetized plasmas</title><author>Carati, A. ; Zuin, M. ; Maiocchi, A. ; Marino, M. ; Martines, E. ; Galgani, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-5daa329ea19d1d379a6be47f7d15557ba3cce2577b02069092e866bb1f4a89683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>BREAKDOWN</topic><topic>CHAOS THEORY</topic><topic>CHARGED PARTICLES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DENSITY</topic><topic>ELECTRIC FIELDS</topic><topic>FLUCTUATIONS</topic><topic>MAGNETIC FIELDS</topic><topic>PERTURBATION THEORY</topic><topic>PLASMA CONFINEMENT</topic><topic>POINT CHARGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carati, A.</creatorcontrib><creatorcontrib>Zuin, M.</creatorcontrib><creatorcontrib>Maiocchi, A.</creatorcontrib><creatorcontrib>Marino, M.</creatorcontrib><creatorcontrib>Martines, E.</creatorcontrib><creatorcontrib>Galgani, L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carati, A.</au><au>Zuin, M.</au><au>Maiocchi, A.</au><au>Marino, M.</au><au>Martines, E.</au><au>Galgani, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition from order to chaos, and density limit, in magnetized plasmas</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>22</volume><issue>3</issue><spage>033124</spage><epage>033124</epage><pages>033124-033124</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>It is known that a plasma in a magnetic field, conceived microscopically as a system of point charges, can exist in a magnetized state, and thus remain confined, inasmuch as it is in an ordered state of motion, with the charged particles performing gyrational motions transverse to the field. Here, we give an estimate of a threshold, beyond which transverse motions become chaotic, the electrons being unable to perform even one gyration, so that a breakdown should occur, with complete loss of confinement. The estimate is obtained by the methods of perturbation theory, taking as perturbing force acting on each electron that due to the so–called microfield, i.e., the electric field produced by all the other charges. We first obtain a general relation for the threshold, which involves the fluctuations of the microfield. Then, taking for such fluctuations, the formula given by Iglesias, Lebowitz, and MacGowan for the model of a one component plasma with neutralizing background, we obtain a definite formula for the threshold, which corresponds to a density limit increasing as the square of the imposed magnetic field. Such a theoretical density limit is found to fit pretty well the empirical data for collapses of fusion machines.</abstract><cop>United States</cop><pmid>23020463</pmid><doi>10.1063/1.4745851</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2012-09, Vol.22 (3), p.033124-033124 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_osti_scitechconnect_22093715 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY BREAKDOWN CHAOS THEORY CHARGED PARTICLES CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DENSITY ELECTRIC FIELDS FLUCTUATIONS MAGNETIC FIELDS PERTURBATION THEORY PLASMA CONFINEMENT POINT CHARGE |
title | Transition from order to chaos, and density limit, in magnetized plasmas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20from%20order%20to%20chaos,%20and%20density%20limit,%20in%20magnetized%20plasmas&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Carati,%20A.&rft.date=2012-09-01&rft.volume=22&rft.issue=3&rft.spage=033124&rft.epage=033124&rft.pages=033124-033124&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.4745851&rft_dat=%3Cproquest_osti_%3E1506353089%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1081874326&rft_id=info:pmid/23020463&rfr_iscdi=true |