THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. VII. THE LOW-VELOCITY COLLISION BEHAVIOR OF LARGE DUST AGGLOMERATES

We performed micro-gravity collision experiments in our laboratory drop tower using 5 cm sized dust agglomerates with volume filling factors of 0.3 and 0.4, respectively. This work is an extension of our previous experiments reported in Beitz et al. to aggregates of more than one order of magnitude...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2012-10, Vol.758 (1), p.1-9
Hauptverfasser: SCHRÄPLER, Rainer, BLUM, Jürgen, SEIZINGER, Alexander, KLEY, Wilhelm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We performed micro-gravity collision experiments in our laboratory drop tower using 5 cm sized dust agglomerates with volume filling factors of 0.3 and 0.4, respectively. This work is an extension of our previous experiments reported in Beitz et al. to aggregates of more than one order of magnitude higher masses. The dust aggregates consisted of micrometer-sized silica particles and were macroscopically homogeneous. We measured the coefficient of restitution for collision velocities ranging from 1 cm s super(-1) to 0.5 m s super(-1), and determined the fragmentation velocity. For low velocities, the coefficient of restitution decreases with increasing impact velocity, in contrast to findings by Beitz et al. At higher velocities, the value of the coefficient of restitution becomes constant, before the aggregates break at the onset of fragmentation. We interpret the qualitative change in the coefficient of restitution as the transition from a solid-body-dominated to a granular-medium-dominated behavior. We complement our experiments by molecular-dynamics simulations of porous aggregates and obtain a reasonable match to the experimental data. We discuss the importance of our experiments for protoplanetary disks, debris disks, and planetary rings. This work is an extension to the previous work of our group and gives new insight into the velocity dependency of the coefficient of restitution due to improved measurements, better statistics, and a theoretical approach.
ISSN:0004-637X
1538-4357
DOI:10.1088/0004-637X/758/1/35