Low temperature oxidation mechanisms of nanocrystalline magnetite thin film
A detailed investigation of the mechanisms related to the low temperature oxidation of nanocrystalline magnetite thin films into maghemite is presented. Despite strong differences in the functional properties of these two phases, structural similarities make it difficult to distinguish between them,...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2013-01, Vol.113 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 113 |
creator | Bourgeois, F. Gergaud, P. Renevier, H. Leclere, C. Feuillet, G. |
description | A detailed investigation of the mechanisms related to the low temperature oxidation of nanocrystalline magnetite thin films into maghemite is presented. Despite strong differences in the functional properties of these two phases, structural similarities make it difficult to distinguish between them, and to quantify the oxidation process, particularly in the case of nanostructured polycrystalline layers. Contrary to the case of bulk materials or monocrystalline films and particles, the oxidation processes in nanocrystalline thin film have only scarcely been studied. In this work, structural and optical techniques, including X-ray diffraction (XRD), EXAFS/X-ray absorption near edge structure, FTIR, and Raman scattering, have been used to estimate the oxidation rate of magnetite. The overall oxidation reaction rates are discussed in the framework of two limiting cases corresponding to intra grain diffusion and to grain boundary diffusion. SIMS profiling and electrical measurements were also carried out to better assess the oxidation quantification in order to conclude on the predominant oxidation mechanisms in this heterogeneous material. We propose a qualitative model for the structure, in terms of insulating zone distribution, for partially oxidized films. |
doi_str_mv | 10.1063/1.4772714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22089671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671413969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-7d4211214924e49439c8d38b6e776210663256dcf0b23f2d30d7d2dedeffb7113</originalsourceid><addsrcrecordid>eNpFkcFKAzEQhoMoWKsH32DBix5WM0m62RxLUSsWvOg5pMmsjewmdZOqfXu3tOhpYPj4Zn5-Qi6B3gKt-B3cCimZBHFERkBrVcrJhB6TEaUMylpJdUrOUvqgFKDmakSeF_G7yNitsTd502MRf7wz2cdQdGhXJvjUpSI2RTAh2n6bsmlbH7DozHvA7DMWeeVD0fi2OycnjWkTXhzmmLw93L_O5uXi5fFpNl2UljORS-kEA2AgFBMolODK1o7XywqlrNiQouJsUjnb0CXjDXOcOumYQ4dNs5QAfEyu9t6YstfJDk_YlY0hoM2asSF1JXfUzZ5amVave9-Zfquj8Xo-Xejdjg6nJGXV14693rPrPn5uMGXd-WSxbU3AuEkaBqEArir1r7V9TKnH5s8NVO8q0KAPFfBfQo92uw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671413969</pqid></control><display><type>article</type><title>Low temperature oxidation mechanisms of nanocrystalline magnetite thin film</title><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><source>AIP Journals (American Institute of Physics)</source><creator>Bourgeois, F. ; Gergaud, P. ; Renevier, H. ; Leclere, C. ; Feuillet, G.</creator><creatorcontrib>Bourgeois, F. ; Gergaud, P. ; Renevier, H. ; Leclere, C. ; Feuillet, G.</creatorcontrib><description>A detailed investigation of the mechanisms related to the low temperature oxidation of nanocrystalline magnetite thin films into maghemite is presented. Despite strong differences in the functional properties of these two phases, structural similarities make it difficult to distinguish between them, and to quantify the oxidation process, particularly in the case of nanostructured polycrystalline layers. Contrary to the case of bulk materials or monocrystalline films and particles, the oxidation processes in nanocrystalline thin film have only scarcely been studied. In this work, structural and optical techniques, including X-ray diffraction (XRD), EXAFS/X-ray absorption near edge structure, FTIR, and Raman scattering, have been used to estimate the oxidation rate of magnetite. The overall oxidation reaction rates are discussed in the framework of two limiting cases corresponding to intra grain diffusion and to grain boundary diffusion. SIMS profiling and electrical measurements were also carried out to better assess the oxidation quantification in order to conclude on the predominant oxidation mechanisms in this heterogeneous material. We propose a qualitative model for the structure, in terms of insulating zone distribution, for partially oxidized films.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4772714</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ABSORPTION SPECTROSCOPY ; Chemical Sciences ; DIFFUSION ; Diffusion rate ; FOURIER TRANSFORM SPECTROMETERS ; GRAIN BOUNDARIES ; INFRARED SPECTRA ; ION MICROPROBE ANALYSIS ; IRON COMPOUNDS ; LAYERS ; MAGNETITE ; MASS SPECTRA ; Material chemistry ; MATERIALS SCIENCE ; Nanocrystals ; Nanostructure ; NANOSTRUCTURES ; OXIDATION ; POLYCRYSTALS ; RAMAN EFFECT ; RAMAN SPECTRA ; Secondary ion mass spectrometry ; THIN FILMS ; X RADIATION ; X-RAY DIFFRACTION ; X-RAY SPECTROSCOPY ; X-rays</subject><ispartof>Journal of applied physics, 2013-01, Vol.113 (1)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-7d4211214924e49439c8d38b6e776210663256dcf0b23f2d30d7d2dedeffb7113</citedby><cites>FETCH-LOGICAL-c324t-7d4211214924e49439c8d38b6e776210663256dcf0b23f2d30d7d2dedeffb7113</cites><orcidid>0000-0002-2317-9344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01067026$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22089671$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourgeois, F.</creatorcontrib><creatorcontrib>Gergaud, P.</creatorcontrib><creatorcontrib>Renevier, H.</creatorcontrib><creatorcontrib>Leclere, C.</creatorcontrib><creatorcontrib>Feuillet, G.</creatorcontrib><title>Low temperature oxidation mechanisms of nanocrystalline magnetite thin film</title><title>Journal of applied physics</title><description>A detailed investigation of the mechanisms related to the low temperature oxidation of nanocrystalline magnetite thin films into maghemite is presented. Despite strong differences in the functional properties of these two phases, structural similarities make it difficult to distinguish between them, and to quantify the oxidation process, particularly in the case of nanostructured polycrystalline layers. Contrary to the case of bulk materials or monocrystalline films and particles, the oxidation processes in nanocrystalline thin film have only scarcely been studied. In this work, structural and optical techniques, including X-ray diffraction (XRD), EXAFS/X-ray absorption near edge structure, FTIR, and Raman scattering, have been used to estimate the oxidation rate of magnetite. The overall oxidation reaction rates are discussed in the framework of two limiting cases corresponding to intra grain diffusion and to grain boundary diffusion. SIMS profiling and electrical measurements were also carried out to better assess the oxidation quantification in order to conclude on the predominant oxidation mechanisms in this heterogeneous material. We propose a qualitative model for the structure, in terms of insulating zone distribution, for partially oxidized films.</description><subject>ABSORPTION SPECTROSCOPY</subject><subject>Chemical Sciences</subject><subject>DIFFUSION</subject><subject>Diffusion rate</subject><subject>FOURIER TRANSFORM SPECTROMETERS</subject><subject>GRAIN BOUNDARIES</subject><subject>INFRARED SPECTRA</subject><subject>ION MICROPROBE ANALYSIS</subject><subject>IRON COMPOUNDS</subject><subject>LAYERS</subject><subject>MAGNETITE</subject><subject>MASS SPECTRA</subject><subject>Material chemistry</subject><subject>MATERIALS SCIENCE</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>NANOSTRUCTURES</subject><subject>OXIDATION</subject><subject>POLYCRYSTALS</subject><subject>RAMAN EFFECT</subject><subject>RAMAN SPECTRA</subject><subject>Secondary ion mass spectrometry</subject><subject>THIN FILMS</subject><subject>X RADIATION</subject><subject>X-RAY DIFFRACTION</subject><subject>X-RAY SPECTROSCOPY</subject><subject>X-rays</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkcFKAzEQhoMoWKsH32DBix5WM0m62RxLUSsWvOg5pMmsjewmdZOqfXu3tOhpYPj4Zn5-Qi6B3gKt-B3cCimZBHFERkBrVcrJhB6TEaUMylpJdUrOUvqgFKDmakSeF_G7yNitsTd502MRf7wz2cdQdGhXJvjUpSI2RTAh2n6bsmlbH7DozHvA7DMWeeVD0fi2OycnjWkTXhzmmLw93L_O5uXi5fFpNl2UljORS-kEA2AgFBMolODK1o7XywqlrNiQouJsUjnb0CXjDXOcOumYQ4dNs5QAfEyu9t6YstfJDk_YlY0hoM2asSF1JXfUzZ5amVave9-Zfquj8Xo-Xejdjg6nJGXV14693rPrPn5uMGXd-WSxbU3AuEkaBqEArir1r7V9TKnH5s8NVO8q0KAPFfBfQo92uw</recordid><startdate>20130107</startdate><enddate>20130107</enddate><creator>Bourgeois, F.</creator><creator>Gergaud, P.</creator><creator>Renevier, H.</creator><creator>Leclere, C.</creator><creator>Feuillet, G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2317-9344</orcidid></search><sort><creationdate>20130107</creationdate><title>Low temperature oxidation mechanisms of nanocrystalline magnetite thin film</title><author>Bourgeois, F. ; Gergaud, P. ; Renevier, H. ; Leclere, C. ; Feuillet, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-7d4211214924e49439c8d38b6e776210663256dcf0b23f2d30d7d2dedeffb7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ABSORPTION SPECTROSCOPY</topic><topic>Chemical Sciences</topic><topic>DIFFUSION</topic><topic>Diffusion rate</topic><topic>FOURIER TRANSFORM SPECTROMETERS</topic><topic>GRAIN BOUNDARIES</topic><topic>INFRARED SPECTRA</topic><topic>ION MICROPROBE ANALYSIS</topic><topic>IRON COMPOUNDS</topic><topic>LAYERS</topic><topic>MAGNETITE</topic><topic>MASS SPECTRA</topic><topic>Material chemistry</topic><topic>MATERIALS SCIENCE</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>NANOSTRUCTURES</topic><topic>OXIDATION</topic><topic>POLYCRYSTALS</topic><topic>RAMAN EFFECT</topic><topic>RAMAN SPECTRA</topic><topic>Secondary ion mass spectrometry</topic><topic>THIN FILMS</topic><topic>X RADIATION</topic><topic>X-RAY DIFFRACTION</topic><topic>X-RAY SPECTROSCOPY</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourgeois, F.</creatorcontrib><creatorcontrib>Gergaud, P.</creatorcontrib><creatorcontrib>Renevier, H.</creatorcontrib><creatorcontrib>Leclere, C.</creatorcontrib><creatorcontrib>Feuillet, G.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourgeois, F.</au><au>Gergaud, P.</au><au>Renevier, H.</au><au>Leclere, C.</au><au>Feuillet, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low temperature oxidation mechanisms of nanocrystalline magnetite thin film</atitle><jtitle>Journal of applied physics</jtitle><date>2013-01-07</date><risdate>2013</risdate><volume>113</volume><issue>1</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>A detailed investigation of the mechanisms related to the low temperature oxidation of nanocrystalline magnetite thin films into maghemite is presented. Despite strong differences in the functional properties of these two phases, structural similarities make it difficult to distinguish between them, and to quantify the oxidation process, particularly in the case of nanostructured polycrystalline layers. Contrary to the case of bulk materials or monocrystalline films and particles, the oxidation processes in nanocrystalline thin film have only scarcely been studied. In this work, structural and optical techniques, including X-ray diffraction (XRD), EXAFS/X-ray absorption near edge structure, FTIR, and Raman scattering, have been used to estimate the oxidation rate of magnetite. The overall oxidation reaction rates are discussed in the framework of two limiting cases corresponding to intra grain diffusion and to grain boundary diffusion. SIMS profiling and electrical measurements were also carried out to better assess the oxidation quantification in order to conclude on the predominant oxidation mechanisms in this heterogeneous material. We propose a qualitative model for the structure, in terms of insulating zone distribution, for partially oxidized films.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4772714</doi><orcidid>https://orcid.org/0000-0002-2317-9344</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2013-01, Vol.113 (1) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22089671 |
source | AIP Digital Archive; Alma/SFX Local Collection; AIP Journals (American Institute of Physics) |
subjects | ABSORPTION SPECTROSCOPY Chemical Sciences DIFFUSION Diffusion rate FOURIER TRANSFORM SPECTROMETERS GRAIN BOUNDARIES INFRARED SPECTRA ION MICROPROBE ANALYSIS IRON COMPOUNDS LAYERS MAGNETITE MASS SPECTRA Material chemistry MATERIALS SCIENCE Nanocrystals Nanostructure NANOSTRUCTURES OXIDATION POLYCRYSTALS RAMAN EFFECT RAMAN SPECTRA Secondary ion mass spectrometry THIN FILMS X RADIATION X-RAY DIFFRACTION X-RAY SPECTROSCOPY X-rays |
title | Low temperature oxidation mechanisms of nanocrystalline magnetite thin film |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20temperature%20oxidation%20mechanisms%20of%20nanocrystalline%20magnetite%20thin%20film&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bourgeois,%20F.&rft.date=2013-01-07&rft.volume=113&rft.issue=1&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4772714&rft_dat=%3Cproquest_osti_%3E1671413969%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671413969&rft_id=info:pmid/&rfr_iscdi=true |