Microwave plasma source operating with atmospheric pressure air-water mixtures
The overall performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model previously developed has been improved in order to describe in detail the creation and loss processes of active species of interest. This model provid...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2012-11, Vol.112 (9) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 112 |
creator | Tatarova, E. Henriques, J. P. Felizardo, E. Lino da Silva, M. Ferreira, C. M. Gordiets, B. |
description | The overall performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model previously developed has been improved in order to describe in detail the creation and loss processes of active species of interest. This model provides a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N + O → NO+ + e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage, according to the model predictions and the measurements. Other types of species such as NO2 and nitrous acid HNO2 have also been detected by mass and Fourier Transform Infrared spectroscopy. The relative population density of O(3P) ground state atoms increases from 8% to 10% in the discharge zone when the input microwave power increases from 200 to 400 W and the water percentage from 1% to 10%. Furthermore, high densities of O2(a1Δg) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O2(a1Δg) density is about 0.1% of the total density. This plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest. |
doi_str_mv | 10.1063/1.4762015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22089556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1412504292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-dd4482412b2aee0b799e97e07c2470cb4cba7b0f5db80a2770f423710b70b77d3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK4e_AcBL3roOknTTXOUxS9Y9aLnkKZTN9JuapK6-u-NrDAwMDwM7_sQcs5gwWBZXrOFkEsOrDogMwa1KmRVwSGZAXBW1EqqY3IS4wcAY3WpZuT5ydngd-YL6dibOBga_RQsUj9iMMlt3-nOpQ01afBx3GBwlo4BY5wCUuNCsTMJAx3cd8qXeEqOOtNHPPvfc_J2d_u6eijWL_ePq5t1YbmCVLStEDUXjDfcIEIjlUIlEaTlQoJthG2MbKCr2qYGw6WETvBSskzmkW05Jxf7vz4mp6N1Ce3G-u0WbdKc5-JVtczU5Z4ag_-cMCY9uGix780W_RQ1ywkqEFzxjF7t0WwjxoCdHoMbTPjRDPSfWc30v9nyFwcyatw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412504292</pqid></control><display><type>article</type><title>Microwave plasma source operating with atmospheric pressure air-water mixtures</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Tatarova, E. ; Henriques, J. P. ; Felizardo, E. ; Lino da Silva, M. ; Ferreira, C. M. ; Gordiets, B.</creator><creatorcontrib>Tatarova, E. ; Henriques, J. P. ; Felizardo, E. ; Lino da Silva, M. ; Ferreira, C. M. ; Gordiets, B.</creatorcontrib><description>The overall performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model previously developed has been improved in order to describe in detail the creation and loss processes of active species of interest. This model provides a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N + O → NO+ + e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage, according to the model predictions and the measurements. Other types of species such as NO2 and nitrous acid HNO2 have also been detected by mass and Fourier Transform Infrared spectroscopy. The relative population density of O(3P) ground state atoms increases from 8% to 10% in the discharge zone when the input microwave power increases from 200 to 400 W and the water percentage from 1% to 10%. Furthermore, high densities of O2(a1Δg) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O2(a1Δg) density is about 0.1% of the total density. This plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4762015</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; AFTERGLOW ; AIR ; ATMOSPHERIC PRESSURE ; FOURIER TRANSFORM SPECTROMETERS ; GROUND STATES ; HIGH-FREQUENCY DISCHARGES ; HYDROXYL RADICALS ; IONIZATION ; MICROWAVE RADIATION ; MIXTURES ; NITROGEN DIOXIDE ; NITROUS ACID ; PLASMA ; PLASMA DENSITY ; PLASMA DIAGNOSTICS ; PLASMA JETS ; SIMULATION ; WATER</subject><ispartof>Journal of applied physics, 2012-11, Vol.112 (9)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-dd4482412b2aee0b799e97e07c2470cb4cba7b0f5db80a2770f423710b70b77d3</citedby><cites>FETCH-LOGICAL-c290t-dd4482412b2aee0b799e97e07c2470cb4cba7b0f5db80a2770f423710b70b77d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22089556$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tatarova, E.</creatorcontrib><creatorcontrib>Henriques, J. P.</creatorcontrib><creatorcontrib>Felizardo, E.</creatorcontrib><creatorcontrib>Lino da Silva, M.</creatorcontrib><creatorcontrib>Ferreira, C. M.</creatorcontrib><creatorcontrib>Gordiets, B.</creatorcontrib><title>Microwave plasma source operating with atmospheric pressure air-water mixtures</title><title>Journal of applied physics</title><description>The overall performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model previously developed has been improved in order to describe in detail the creation and loss processes of active species of interest. This model provides a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N + O → NO+ + e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage, according to the model predictions and the measurements. Other types of species such as NO2 and nitrous acid HNO2 have also been detected by mass and Fourier Transform Infrared spectroscopy. The relative population density of O(3P) ground state atoms increases from 8% to 10% in the discharge zone when the input microwave power increases from 200 to 400 W and the water percentage from 1% to 10%. Furthermore, high densities of O2(a1Δg) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O2(a1Δg) density is about 0.1% of the total density. This plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>AFTERGLOW</subject><subject>AIR</subject><subject>ATMOSPHERIC PRESSURE</subject><subject>FOURIER TRANSFORM SPECTROMETERS</subject><subject>GROUND STATES</subject><subject>HIGH-FREQUENCY DISCHARGES</subject><subject>HYDROXYL RADICALS</subject><subject>IONIZATION</subject><subject>MICROWAVE RADIATION</subject><subject>MIXTURES</subject><subject>NITROGEN DIOXIDE</subject><subject>NITROUS ACID</subject><subject>PLASMA</subject><subject>PLASMA DENSITY</subject><subject>PLASMA DIAGNOSTICS</subject><subject>PLASMA JETS</subject><subject>SIMULATION</subject><subject>WATER</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMouK4e_AcBL3roOknTTXOUxS9Y9aLnkKZTN9JuapK6-u-NrDAwMDwM7_sQcs5gwWBZXrOFkEsOrDogMwa1KmRVwSGZAXBW1EqqY3IS4wcAY3WpZuT5ydngd-YL6dibOBga_RQsUj9iMMlt3-nOpQ01afBx3GBwlo4BY5wCUuNCsTMJAx3cd8qXeEqOOtNHPPvfc_J2d_u6eijWL_ePq5t1YbmCVLStEDUXjDfcIEIjlUIlEaTlQoJthG2MbKCr2qYGw6WETvBSskzmkW05Jxf7vz4mp6N1Ce3G-u0WbdKc5-JVtczU5Z4ag_-cMCY9uGix780W_RQ1ywkqEFzxjF7t0WwjxoCdHoMbTPjRDPSfWc30v9nyFwcyatw</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Tatarova, E.</creator><creator>Henriques, J. P.</creator><creator>Felizardo, E.</creator><creator>Lino da Silva, M.</creator><creator>Ferreira, C. M.</creator><creator>Gordiets, B.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>20121101</creationdate><title>Microwave plasma source operating with atmospheric pressure air-water mixtures</title><author>Tatarova, E. ; Henriques, J. P. ; Felizardo, E. ; Lino da Silva, M. ; Ferreira, C. M. ; Gordiets, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-dd4482412b2aee0b799e97e07c2470cb4cba7b0f5db80a2770f423710b70b77d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>AFTERGLOW</topic><topic>AIR</topic><topic>ATMOSPHERIC PRESSURE</topic><topic>FOURIER TRANSFORM SPECTROMETERS</topic><topic>GROUND STATES</topic><topic>HIGH-FREQUENCY DISCHARGES</topic><topic>HYDROXYL RADICALS</topic><topic>IONIZATION</topic><topic>MICROWAVE RADIATION</topic><topic>MIXTURES</topic><topic>NITROGEN DIOXIDE</topic><topic>NITROUS ACID</topic><topic>PLASMA</topic><topic>PLASMA DENSITY</topic><topic>PLASMA DIAGNOSTICS</topic><topic>PLASMA JETS</topic><topic>SIMULATION</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tatarova, E.</creatorcontrib><creatorcontrib>Henriques, J. P.</creatorcontrib><creatorcontrib>Felizardo, E.</creatorcontrib><creatorcontrib>Lino da Silva, M.</creatorcontrib><creatorcontrib>Ferreira, C. M.</creatorcontrib><creatorcontrib>Gordiets, B.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tatarova, E.</au><au>Henriques, J. P.</au><au>Felizardo, E.</au><au>Lino da Silva, M.</au><au>Ferreira, C. M.</au><au>Gordiets, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave plasma source operating with atmospheric pressure air-water mixtures</atitle><jtitle>Journal of applied physics</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>112</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The overall performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model previously developed has been improved in order to describe in detail the creation and loss processes of active species of interest. This model provides a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N + O → NO+ + e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage, according to the model predictions and the measurements. Other types of species such as NO2 and nitrous acid HNO2 have also been detected by mass and Fourier Transform Infrared spectroscopy. The relative population density of O(3P) ground state atoms increases from 8% to 10% in the discharge zone when the input microwave power increases from 200 to 400 W and the water percentage from 1% to 10%. Furthermore, high densities of O2(a1Δg) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O2(a1Δg) density is about 0.1% of the total density. This plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest.</abstract><cop>United States</cop><doi>10.1063/1.4762015</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2012-11, Vol.112 (9) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22089556 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY AFTERGLOW AIR ATMOSPHERIC PRESSURE FOURIER TRANSFORM SPECTROMETERS GROUND STATES HIGH-FREQUENCY DISCHARGES HYDROXYL RADICALS IONIZATION MICROWAVE RADIATION MIXTURES NITROGEN DIOXIDE NITROUS ACID PLASMA PLASMA DENSITY PLASMA DIAGNOSTICS PLASMA JETS SIMULATION WATER |
title | Microwave plasma source operating with atmospheric pressure air-water mixtures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20plasma%20source%20operating%20with%20atmospheric%20pressure%20air-water%20mixtures&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Tatarova,%20E.&rft.date=2012-11-01&rft.volume=112&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4762015&rft_dat=%3Cproquest_osti_%3E1412504292%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412504292&rft_id=info:pmid/&rfr_iscdi=true |