AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS

The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbule...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2012-11, Vol.760 (1), p.1-8
Hauptverfasser: PAK SHING LI, MYERS, Andrew, MCKEE, Christopher F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 1
container_start_page 1
container_title The Astrophysical journal
container_volume 760
creator PAK SHING LI
MYERS, Andrew
MCKEE, Christopher F
description The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of ~1 and AD Reynolds numbers of ~20, about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important than cosmic-ray heating in molecular clouds, although there is substantial scatter in both.
doi_str_mv 10.1088/0004-637X/760/1/33
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22086333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705077030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-7743263e2e7e45415627f6e097e02c00934117ee1f8986d73c8a68997fb4d02c3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFb_gKeACF5iZj-yuzmmNW0DbSpNAnpa4naDkbap2fTgvzexpWfnMgw878vwIHSP4RmDlB4AMJdT8eYJDh72KL1AA-xT6TLqi0s0OAPX6Mbar_4kQTBAEC5G8etyHq6cl3gyydN4mTizKMziZOrEiZPlq1E-j5LMSd_TLFqkt-iqLDbW3J32EOWTKBvP3PlyGo_DuasZZ60rBKOEU0OMMMxn2OdElNxAIAwQDRBQhrEwBpcykHwtqJYFl0Egyg-27gg6RA_H3tq2lbK6ao3-1PVuZ3SrCAHJaTdD9HSk9k39fTC2VdvKarPZFDtTH6zCAsuAcQLiHyj4IARQ6FByRHVTW9uYUu2bals0PwqD6n2r3p_qdarOt8Lq75XHU39hdbEpm2KnK3tOEs6BgY_pLx1Fd6I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705077030</pqid></control><display><type>article</type><title>AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>PAK SHING LI ; MYERS, Andrew ; MCKEE, Christopher F</creator><creatorcontrib>PAK SHING LI ; MYERS, Andrew ; MCKEE, Christopher F</creatorcontrib><description>The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of ~1 and AD Reynolds numbers of ~20, about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important than cosmic-ray heating in molecular clouds, although there is substantial scatter in both.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/760/1/33</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP</publisher><subject>AMBIPOLAR DIFFUSION ; ASTRONOMY ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COMPARATIVE EVALUATIONS ; COMPUTERIZED SIMULATION ; COSMIC RADIATION ; Dissipation ; Earth, ocean, space ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; HEATING ; HEATING RATE ; IONS ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; MASS ; Molecular clouds ; PLASMA FLUID EQUATIONS ; REYNOLDS NUMBER ; STARS ; TURBULENCE ; Turbulent flow</subject><ispartof>The Astrophysical journal, 2012-11, Vol.760 (1), p.1-8</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-7743263e2e7e45415627f6e097e02c00934117ee1f8986d73c8a68997fb4d02c3</citedby><cites>FETCH-LOGICAL-c464t-7743263e2e7e45415627f6e097e02c00934117ee1f8986d73c8a68997fb4d02c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26604051$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22086333$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>PAK SHING LI</creatorcontrib><creatorcontrib>MYERS, Andrew</creatorcontrib><creatorcontrib>MCKEE, Christopher F</creatorcontrib><title>AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS</title><title>The Astrophysical journal</title><description>The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of ~1 and AD Reynolds numbers of ~20, about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important than cosmic-ray heating in molecular clouds, although there is substantial scatter in both.</description><subject>AMBIPOLAR DIFFUSION</subject><subject>ASTRONOMY</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COSMIC RADIATION</subject><subject>Dissipation</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>HEATING</subject><subject>HEATING RATE</subject><subject>IONS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MASS</subject><subject>Molecular clouds</subject><subject>PLASMA FLUID EQUATIONS</subject><subject>REYNOLDS NUMBER</subject><subject>STARS</subject><subject>TURBULENCE</subject><subject>Turbulent flow</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRsFb_gKeACF5iZj-yuzmmNW0DbSpNAnpa4naDkbap2fTgvzexpWfnMgw878vwIHSP4RmDlB4AMJdT8eYJDh72KL1AA-xT6TLqi0s0OAPX6Mbar_4kQTBAEC5G8etyHq6cl3gyydN4mTizKMziZOrEiZPlq1E-j5LMSd_TLFqkt-iqLDbW3J32EOWTKBvP3PlyGo_DuasZZ60rBKOEU0OMMMxn2OdElNxAIAwQDRBQhrEwBpcykHwtqJYFl0Egyg-27gg6RA_H3tq2lbK6ao3-1PVuZ3SrCAHJaTdD9HSk9k39fTC2VdvKarPZFDtTH6zCAsuAcQLiHyj4IARQ6FByRHVTW9uYUu2bals0PwqD6n2r3p_qdarOt8Lq75XHU39hdbEpm2KnK3tOEs6BgY_pLx1Fd6I</recordid><startdate>20121120</startdate><enddate>20121120</enddate><creator>PAK SHING LI</creator><creator>MYERS, Andrew</creator><creator>MCKEE, Christopher F</creator><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20121120</creationdate><title>AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS</title><author>PAK SHING LI ; MYERS, Andrew ; MCKEE, Christopher F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-7743263e2e7e45415627f6e097e02c00934117ee1f8986d73c8a68997fb4d02c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AMBIPOLAR DIFFUSION</topic><topic>ASTRONOMY</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COSMIC RADIATION</topic><topic>Dissipation</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>HEATING</topic><topic>HEATING RATE</topic><topic>IONS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MASS</topic><topic>Molecular clouds</topic><topic>PLASMA FLUID EQUATIONS</topic><topic>REYNOLDS NUMBER</topic><topic>STARS</topic><topic>TURBULENCE</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PAK SHING LI</creatorcontrib><creatorcontrib>MYERS, Andrew</creatorcontrib><creatorcontrib>MCKEE, Christopher F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PAK SHING LI</au><au>MYERS, Andrew</au><au>MCKEE, Christopher F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS</atitle><jtitle>The Astrophysical journal</jtitle><date>2012-11-20</date><risdate>2012</risdate><volume>760</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of ~1 and AD Reynolds numbers of ~20, about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important than cosmic-ray heating in molecular clouds, although there is substantial scatter in both.</abstract><cop>Bristol</cop><pub>IOP</pub><doi>10.1088/0004-637X/760/1/33</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2012-11, Vol.760 (1), p.1-8
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22086333
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects AMBIPOLAR DIFFUSION
ASTRONOMY
ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
COMPARATIVE EVALUATIONS
COMPUTERIZED SIMULATION
COSMIC RADIATION
Dissipation
Earth, ocean, space
Exact sciences and technology
Fluid dynamics
Fluid flow
HEATING
HEATING RATE
IONS
MAGNETIC FIELDS
MAGNETOHYDRODYNAMICS
MASS
Molecular clouds
PLASMA FLUID EQUATIONS
REYNOLDS NUMBER
STARS
TURBULENCE
Turbulent flow
title AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AMBIPOLAR%20DIFFUSION%20HEATING%20IN%20TURBULENT%20SYSTEMS&rft.jtitle=The%20Astrophysical%20journal&rft.au=PAK%20SHING%20LI&rft.date=2012-11-20&rft.volume=760&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/760/1/33&rft_dat=%3Cproquest_osti_%3E1705077030%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705077030&rft_id=info:pmid/&rfr_iscdi=true