AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS
The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbule...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2012-11, Vol.760 (1), p.1-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | The Astrophysical journal |
container_volume | 760 |
creator | PAK SHING LI MYERS, Andrew MCKEE, Christopher F |
description | The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of ~1 and AD Reynolds numbers of ~20, about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important than cosmic-ray heating in molecular clouds, although there is substantial scatter in both. |
doi_str_mv | 10.1088/0004-637X/760/1/33 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22086333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1705077030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-7743263e2e7e45415627f6e097e02c00934117ee1f8986d73c8a68997fb4d02c3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFb_gKeACF5iZj-yuzmmNW0DbSpNAnpa4naDkbap2fTgvzexpWfnMgw878vwIHSP4RmDlB4AMJdT8eYJDh72KL1AA-xT6TLqi0s0OAPX6Mbar_4kQTBAEC5G8etyHq6cl3gyydN4mTizKMziZOrEiZPlq1E-j5LMSd_TLFqkt-iqLDbW3J32EOWTKBvP3PlyGo_DuasZZ60rBKOEU0OMMMxn2OdElNxAIAwQDRBQhrEwBpcykHwtqJYFl0Egyg-27gg6RA_H3tq2lbK6ao3-1PVuZ3SrCAHJaTdD9HSk9k39fTC2VdvKarPZFDtTH6zCAsuAcQLiHyj4IARQ6FByRHVTW9uYUu2bals0PwqD6n2r3p_qdarOt8Lq75XHU39hdbEpm2KnK3tOEs6BgY_pLx1Fd6I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705077030</pqid></control><display><type>article</type><title>AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>PAK SHING LI ; MYERS, Andrew ; MCKEE, Christopher F</creator><creatorcontrib>PAK SHING LI ; MYERS, Andrew ; MCKEE, Christopher F</creatorcontrib><description>The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of ~1 and AD Reynolds numbers of ~20, about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important than cosmic-ray heating in molecular clouds, although there is substantial scatter in both.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/760/1/33</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP</publisher><subject>AMBIPOLAR DIFFUSION ; ASTRONOMY ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COMPARATIVE EVALUATIONS ; COMPUTERIZED SIMULATION ; COSMIC RADIATION ; Dissipation ; Earth, ocean, space ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; HEATING ; HEATING RATE ; IONS ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; MASS ; Molecular clouds ; PLASMA FLUID EQUATIONS ; REYNOLDS NUMBER ; STARS ; TURBULENCE ; Turbulent flow</subject><ispartof>The Astrophysical journal, 2012-11, Vol.760 (1), p.1-8</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-7743263e2e7e45415627f6e097e02c00934117ee1f8986d73c8a68997fb4d02c3</citedby><cites>FETCH-LOGICAL-c464t-7743263e2e7e45415627f6e097e02c00934117ee1f8986d73c8a68997fb4d02c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26604051$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22086333$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>PAK SHING LI</creatorcontrib><creatorcontrib>MYERS, Andrew</creatorcontrib><creatorcontrib>MCKEE, Christopher F</creatorcontrib><title>AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS</title><title>The Astrophysical journal</title><description>The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of ~1 and AD Reynolds numbers of ~20, about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important than cosmic-ray heating in molecular clouds, although there is substantial scatter in both.</description><subject>AMBIPOLAR DIFFUSION</subject><subject>ASTRONOMY</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COSMIC RADIATION</subject><subject>Dissipation</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>HEATING</subject><subject>HEATING RATE</subject><subject>IONS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MASS</subject><subject>Molecular clouds</subject><subject>PLASMA FLUID EQUATIONS</subject><subject>REYNOLDS NUMBER</subject><subject>STARS</subject><subject>TURBULENCE</subject><subject>Turbulent flow</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRsFb_gKeACF5iZj-yuzmmNW0DbSpNAnpa4naDkbap2fTgvzexpWfnMgw878vwIHSP4RmDlB4AMJdT8eYJDh72KL1AA-xT6TLqi0s0OAPX6Mbar_4kQTBAEC5G8etyHq6cl3gyydN4mTizKMziZOrEiZPlq1E-j5LMSd_TLFqkt-iqLDbW3J32EOWTKBvP3PlyGo_DuasZZ60rBKOEU0OMMMxn2OdElNxAIAwQDRBQhrEwBpcykHwtqJYFl0Egyg-27gg6RA_H3tq2lbK6ao3-1PVuZ3SrCAHJaTdD9HSk9k39fTC2VdvKarPZFDtTH6zCAsuAcQLiHyj4IARQ6FByRHVTW9uYUu2bals0PwqD6n2r3p_qdarOt8Lq75XHU39hdbEpm2KnK3tOEs6BgY_pLx1Fd6I</recordid><startdate>20121120</startdate><enddate>20121120</enddate><creator>PAK SHING LI</creator><creator>MYERS, Andrew</creator><creator>MCKEE, Christopher F</creator><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20121120</creationdate><title>AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS</title><author>PAK SHING LI ; MYERS, Andrew ; MCKEE, Christopher F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-7743263e2e7e45415627f6e097e02c00934117ee1f8986d73c8a68997fb4d02c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AMBIPOLAR DIFFUSION</topic><topic>ASTRONOMY</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COSMIC RADIATION</topic><topic>Dissipation</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>HEATING</topic><topic>HEATING RATE</topic><topic>IONS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MASS</topic><topic>Molecular clouds</topic><topic>PLASMA FLUID EQUATIONS</topic><topic>REYNOLDS NUMBER</topic><topic>STARS</topic><topic>TURBULENCE</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PAK SHING LI</creatorcontrib><creatorcontrib>MYERS, Andrew</creatorcontrib><creatorcontrib>MCKEE, Christopher F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PAK SHING LI</au><au>MYERS, Andrew</au><au>MCKEE, Christopher F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS</atitle><jtitle>The Astrophysical journal</jtitle><date>2012-11-20</date><risdate>2012</risdate><volume>760</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using two-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of ~1 and AD Reynolds numbers of ~20, about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important than cosmic-ray heating in molecular clouds, although there is substantial scatter in both.</abstract><cop>Bristol</cop><pub>IOP</pub><doi>10.1088/0004-637X/760/1/33</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2012-11, Vol.760 (1), p.1-8 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22086333 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | AMBIPOLAR DIFFUSION ASTRONOMY ASTROPHYSICS ASTROPHYSICS, COSMOLOGY AND ASTRONOMY COMPARATIVE EVALUATIONS COMPUTERIZED SIMULATION COSMIC RADIATION Dissipation Earth, ocean, space Exact sciences and technology Fluid dynamics Fluid flow HEATING HEATING RATE IONS MAGNETIC FIELDS MAGNETOHYDRODYNAMICS MASS Molecular clouds PLASMA FLUID EQUATIONS REYNOLDS NUMBER STARS TURBULENCE Turbulent flow |
title | AMBIPOLAR DIFFUSION HEATING IN TURBULENT SYSTEMS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AMBIPOLAR%20DIFFUSION%20HEATING%20IN%20TURBULENT%20SYSTEMS&rft.jtitle=The%20Astrophysical%20journal&rft.au=PAK%20SHING%20LI&rft.date=2012-11-20&rft.volume=760&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/760/1/33&rft_dat=%3Cproquest_osti_%3E1705077030%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705077030&rft_id=info:pmid/&rfr_iscdi=true |