Laser-driven relativistic electron beam interaction with solid dielectric
The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. F...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1464 |
creator | Sarkisov, G. S. Ivanov, V. V. Leblanc, P. Sentoku, Y. Yates, K. Wiewior, P. Chalyy, O. Astanovitskiy, A. Bychenkov, V. Yu Jobe, D. Spielman, R. B. Department of Physics, University of Nevada Reno, 5625 Fox Ave, Reno, NV, 89506 P.N. Lebedev Physics Institute, RAS, 53 Leninski Prospect, Moscow, 119991 Raytheon Ktech, 1300 Eubank Blvd, Albuquerque, NM, 87123 |
description | The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields. |
doi_str_mv | 10.1063/1.4739920 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22069154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22069154</sourcerecordid><originalsourceid>FETCH-LOGICAL-o183t-d517223d14735d9d0d676d448d84e567624df00965df6d698ff6ffde59c534643</originalsourceid><addsrcrecordid>eNotzk9LAzEQBfAgCtbqwW8Q8Jya_9kcpagtLHhR8FbWzISOrLuwCfXrG6ineQyPx4-xeyU3SnrzqDY2mBi1vGAr5ZwSwSt_yVZSRiu0NZ_X7KaUbyl1DKFbsX0_FFwELHTCiS84DpVOVColjiOmuswT_8Lhh9NUcRlSpfb4pXrkZR4JONC5RumWXeVhLHj3f9fs4-X5fbsT_dvrfvvUi1l1pgpwKmhtQDWngwgSfPBgbQedRdeytpCb1jvIHnzscvY5A7qYnLHemjV7OO_OTXkoiSqmY5qnqTEOWksflbPmD-01TYs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Laser-driven relativistic electron beam interaction with solid dielectric</title><source>AIP Journals Complete</source><creator>Sarkisov, G. S. ; Ivanov, V. V. ; Leblanc, P. ; Sentoku, Y. ; Yates, K. ; Wiewior, P. ; Chalyy, O. ; Astanovitskiy, A. ; Bychenkov, V. Yu ; Jobe, D. ; Spielman, R. B. ; Department of Physics, University of Nevada Reno, 5625 Fox Ave, Reno, NV, 89506 ; P.N. Lebedev Physics Institute, RAS, 53 Leninski Prospect, Moscow, 119991 ; Raytheon Ktech, 1300 Eubank Blvd, Albuquerque, NM, 87123</creator><creatorcontrib>Sarkisov, G. S. ; Ivanov, V. V. ; Leblanc, P. ; Sentoku, Y. ; Yates, K. ; Wiewior, P. ; Chalyy, O. ; Astanovitskiy, A. ; Bychenkov, V. Yu ; Jobe, D. ; Spielman, R. B. ; Department of Physics, University of Nevada Reno, 5625 Fox Ave, Reno, NV, 89506 ; P.N. Lebedev Physics Institute, RAS, 53 Leninski Prospect, Moscow, 119991 ; Raytheon Ktech, 1300 Eubank Blvd, Albuquerque, NM, 87123</creatorcontrib><description>The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.4739920</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DIELECTRIC MATERIALS ; ELECTRIC FIELDS ; ELECTRON BEAMS ; ELECTRON DENSITY ; ELECTRON TEMPERATURE ; FARADAY EFFECT ; GLASS ; INTERFEROMETRY ; ION TEMPERATURE ; IONIZATION ; KERR EFFECT ; PLASMA ; PLASMA DENSITY ; PLASMA DIAGNOSTICS ; PLASMA PRODUCTION ; PLASMA SIMULATION ; POLARIMETRY ; RECOMBINATION ; RELATIVISTIC RANGE ; SOLIDS</subject><ispartof>AIP conference proceedings, 2012, Vol.1464 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22069154$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkisov, G. S.</creatorcontrib><creatorcontrib>Ivanov, V. V.</creatorcontrib><creatorcontrib>Leblanc, P.</creatorcontrib><creatorcontrib>Sentoku, Y.</creatorcontrib><creatorcontrib>Yates, K.</creatorcontrib><creatorcontrib>Wiewior, P.</creatorcontrib><creatorcontrib>Chalyy, O.</creatorcontrib><creatorcontrib>Astanovitskiy, A.</creatorcontrib><creatorcontrib>Bychenkov, V. Yu</creatorcontrib><creatorcontrib>Jobe, D.</creatorcontrib><creatorcontrib>Spielman, R. B.</creatorcontrib><creatorcontrib>Department of Physics, University of Nevada Reno, 5625 Fox Ave, Reno, NV, 89506</creatorcontrib><creatorcontrib>P.N. Lebedev Physics Institute, RAS, 53 Leninski Prospect, Moscow, 119991</creatorcontrib><creatorcontrib>Raytheon Ktech, 1300 Eubank Blvd, Albuquerque, NM, 87123</creatorcontrib><title>Laser-driven relativistic electron beam interaction with solid dielectric</title><title>AIP conference proceedings</title><description>The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DIELECTRIC MATERIALS</subject><subject>ELECTRIC FIELDS</subject><subject>ELECTRON BEAMS</subject><subject>ELECTRON DENSITY</subject><subject>ELECTRON TEMPERATURE</subject><subject>FARADAY EFFECT</subject><subject>GLASS</subject><subject>INTERFEROMETRY</subject><subject>ION TEMPERATURE</subject><subject>IONIZATION</subject><subject>KERR EFFECT</subject><subject>PLASMA</subject><subject>PLASMA DENSITY</subject><subject>PLASMA DIAGNOSTICS</subject><subject>PLASMA PRODUCTION</subject><subject>PLASMA SIMULATION</subject><subject>POLARIMETRY</subject><subject>RECOMBINATION</subject><subject>RELATIVISTIC RANGE</subject><subject>SOLIDS</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotzk9LAzEQBfAgCtbqwW8Q8Jya_9kcpagtLHhR8FbWzISOrLuwCfXrG6ineQyPx4-xeyU3SnrzqDY2mBi1vGAr5ZwSwSt_yVZSRiu0NZ_X7KaUbyl1DKFbsX0_FFwELHTCiS84DpVOVColjiOmuswT_8Lhh9NUcRlSpfb4pXrkZR4JONC5RumWXeVhLHj3f9fs4-X5fbsT_dvrfvvUi1l1pgpwKmhtQDWngwgSfPBgbQedRdeytpCb1jvIHnzscvY5A7qYnLHemjV7OO_OTXkoiSqmY5qnqTEOWksflbPmD-01TYs</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Sarkisov, G. S.</creator><creator>Ivanov, V. V.</creator><creator>Leblanc, P.</creator><creator>Sentoku, Y.</creator><creator>Yates, K.</creator><creator>Wiewior, P.</creator><creator>Chalyy, O.</creator><creator>Astanovitskiy, A.</creator><creator>Bychenkov, V. Yu</creator><creator>Jobe, D.</creator><creator>Spielman, R. B.</creator><creator>Department of Physics, University of Nevada Reno, 5625 Fox Ave, Reno, NV, 89506</creator><creator>P.N. Lebedev Physics Institute, RAS, 53 Leninski Prospect, Moscow, 119991</creator><creator>Raytheon Ktech, 1300 Eubank Blvd, Albuquerque, NM, 87123</creator><scope>OTOTI</scope></search><sort><creationdate>20120101</creationdate><title>Laser-driven relativistic electron beam interaction with solid dielectric</title><author>Sarkisov, G. S. ; Ivanov, V. V. ; Leblanc, P. ; Sentoku, Y. ; Yates, K. ; Wiewior, P. ; Chalyy, O. ; Astanovitskiy, A. ; Bychenkov, V. Yu ; Jobe, D. ; Spielman, R. B. ; Department of Physics, University of Nevada Reno, 5625 Fox Ave, Reno, NV, 89506 ; P.N. Lebedev Physics Institute, RAS, 53 Leninski Prospect, Moscow, 119991 ; Raytheon Ktech, 1300 Eubank Blvd, Albuquerque, NM, 87123</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o183t-d517223d14735d9d0d676d448d84e567624df00965df6d698ff6ffde59c534643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DIELECTRIC MATERIALS</topic><topic>ELECTRIC FIELDS</topic><topic>ELECTRON BEAMS</topic><topic>ELECTRON DENSITY</topic><topic>ELECTRON TEMPERATURE</topic><topic>FARADAY EFFECT</topic><topic>GLASS</topic><topic>INTERFEROMETRY</topic><topic>ION TEMPERATURE</topic><topic>IONIZATION</topic><topic>KERR EFFECT</topic><topic>PLASMA</topic><topic>PLASMA DENSITY</topic><topic>PLASMA DIAGNOSTICS</topic><topic>PLASMA PRODUCTION</topic><topic>PLASMA SIMULATION</topic><topic>POLARIMETRY</topic><topic>RECOMBINATION</topic><topic>RELATIVISTIC RANGE</topic><topic>SOLIDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkisov, G. S.</creatorcontrib><creatorcontrib>Ivanov, V. V.</creatorcontrib><creatorcontrib>Leblanc, P.</creatorcontrib><creatorcontrib>Sentoku, Y.</creatorcontrib><creatorcontrib>Yates, K.</creatorcontrib><creatorcontrib>Wiewior, P.</creatorcontrib><creatorcontrib>Chalyy, O.</creatorcontrib><creatorcontrib>Astanovitskiy, A.</creatorcontrib><creatorcontrib>Bychenkov, V. Yu</creatorcontrib><creatorcontrib>Jobe, D.</creatorcontrib><creatorcontrib>Spielman, R. B.</creatorcontrib><creatorcontrib>Department of Physics, University of Nevada Reno, 5625 Fox Ave, Reno, NV, 89506</creatorcontrib><creatorcontrib>P.N. Lebedev Physics Institute, RAS, 53 Leninski Prospect, Moscow, 119991</creatorcontrib><creatorcontrib>Raytheon Ktech, 1300 Eubank Blvd, Albuquerque, NM, 87123</creatorcontrib><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkisov, G. S.</au><au>Ivanov, V. V.</au><au>Leblanc, P.</au><au>Sentoku, Y.</au><au>Yates, K.</au><au>Wiewior, P.</au><au>Chalyy, O.</au><au>Astanovitskiy, A.</au><au>Bychenkov, V. Yu</au><au>Jobe, D.</au><au>Spielman, R. B.</au><au>Department of Physics, University of Nevada Reno, 5625 Fox Ave, Reno, NV, 89506</au><au>P.N. Lebedev Physics Institute, RAS, 53 Leninski Prospect, Moscow, 119991</au><au>Raytheon Ktech, 1300 Eubank Blvd, Albuquerque, NM, 87123</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Laser-driven relativistic electron beam interaction with solid dielectric</atitle><btitle>AIP conference proceedings</btitle><date>2012-01-01</date><risdate>2012</risdate><volume>1464</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><abstract>The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.</abstract><cop>United States</cop><doi>10.1063/1.4739920</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2012, Vol.1464 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_22069154 |
source | AIP Journals Complete |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DIELECTRIC MATERIALS ELECTRIC FIELDS ELECTRON BEAMS ELECTRON DENSITY ELECTRON TEMPERATURE FARADAY EFFECT GLASS INTERFEROMETRY ION TEMPERATURE IONIZATION KERR EFFECT PLASMA PLASMA DENSITY PLASMA DIAGNOSTICS PLASMA PRODUCTION PLASMA SIMULATION POLARIMETRY RECOMBINATION RELATIVISTIC RANGE SOLIDS |
title | Laser-driven relativistic electron beam interaction with solid dielectric |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Laser-driven%20relativistic%20electron%20beam%20interaction%20with%20solid%20dielectric&rft.btitle=AIP%20conference%20proceedings&rft.au=Sarkisov,%20G.%20S.&rft.date=2012-01-01&rft.volume=1464&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft_id=info:doi/10.1063/1.4739920&rft_dat=%3Costi%3E22069154%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |