Photonic density of states of two-dimensional quasicrystalline photonic structures

A large photonic band gap (PBG) is highly favorable for photonic crystal devices. One of the most important goals of PBG materials research is identifying structural design strategies for maximizing the gap size. We provide a comprehensive analysis of the PBG properties of two-dimensional (2D) quasi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2011-08, Vol.84 (2), Article 023831
Hauptverfasser: Jia, Lin, Bita, Ion, Thomas, Edwin L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 84
creator Jia, Lin
Bita, Ion
Thomas, Edwin L.
description A large photonic band gap (PBG) is highly favorable for photonic crystal devices. One of the most important goals of PBG materials research is identifying structural design strategies for maximizing the gap size. We provide a comprehensive analysis of the PBG properties of two-dimensional (2D) quasicrystals (QCs), where rotational symmetry, dielectric fill factor, and structural morphology were varied systematically in order to identify correlations between structure and PBG width at a given dielectric contrast (13:1, Si:air). The transverse electric (TE) and transverse magnetic (TM) PBGs of 12 types of QCs are investigated (588 structures). We discovered a 12mm QC with a 56.5% TE PBG, the largest reported TE PBG for an aperiodic crystal to date. We also report here a QC morphology comprising ''throwing star''-like dielectric domains, with near-circular air cores and interconnecting veins emanating radially around the core. This interesting morphology leads to a complete PBG of {approx}20% , which is the largest reported complete PBG for aperiodic crystals.
doi_str_mv 10.1103/PhysRevA.84.023831
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22068573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_84_023831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a0bc1c857142fd16599b2308d62a85edbb3119d28208e3a99afe0cd629e6ceb93</originalsourceid><addsrcrecordid>eNo1kEtrwzAQhEVpoWnaP9CToWenetiOdAyhLwg0hPYsZHmNVRwr1cot_ve1cbOXGZhv5zCE3DO6YoyKx30z4AF-NiuZrSgXUrALsmBUZSkrOL-cfE5TrrL1NblB_KLjZVItyGHf-Og7Z5MKOnRxSHydYDQRcHLx16eVO06R70ybfPcGnQ3DSLSt6yA5nd8xht7GPgDekqvatAh3_7okn89PH9vXdPf-8rbd7FIrmIqpoaVlVuZrlvG6YkWuVMkFlVXBjcyhKkvBmKq45FSCMEqZGqgdUwWFhVKJJXmYez1Gp9G6CLaxvuvARs05LcZuMVJ8pmzwiAFqfQruaMKgGdXTdvq8nZaZnrcTf7AJZek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photonic density of states of two-dimensional quasicrystalline photonic structures</title><source>American Physical Society Journals</source><creator>Jia, Lin ; Bita, Ion ; Thomas, Edwin L.</creator><creatorcontrib>Jia, Lin ; Bita, Ion ; Thomas, Edwin L.</creatorcontrib><description>A large photonic band gap (PBG) is highly favorable for photonic crystal devices. One of the most important goals of PBG materials research is identifying structural design strategies for maximizing the gap size. We provide a comprehensive analysis of the PBG properties of two-dimensional (2D) quasicrystals (QCs), where rotational symmetry, dielectric fill factor, and structural morphology were varied systematically in order to identify correlations between structure and PBG width at a given dielectric contrast (13:1, Si:air). The transverse electric (TE) and transverse magnetic (TM) PBGs of 12 types of QCs are investigated (588 structures). We discovered a 12mm QC with a 56.5% TE PBG, the largest reported TE PBG for an aperiodic crystal to date. We also report here a QC morphology comprising ''throwing star''-like dielectric domains, with near-circular air cores and interconnecting veins emanating radially around the core. This interesting morphology leads to a complete PBG of {approx}20% , which is the largest reported complete PBG for aperiodic crystals.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.84.023831</identifier><language>eng</language><publisher>United States</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CRYSTALS ; DIELECTRIC MATERIALS ; ENERGY GAP ; MORPHOLOGY ; PHOTON-ELECTRON INTERACTIONS ; SYMMETRY ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2011-08, Vol.84 (2), Article 023831</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a0bc1c857142fd16599b2308d62a85edbb3119d28208e3a99afe0cd629e6ceb93</citedby><cites>FETCH-LOGICAL-c319t-a0bc1c857142fd16599b2308d62a85edbb3119d28208e3a99afe0cd629e6ceb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22068573$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Lin</creatorcontrib><creatorcontrib>Bita, Ion</creatorcontrib><creatorcontrib>Thomas, Edwin L.</creatorcontrib><title>Photonic density of states of two-dimensional quasicrystalline photonic structures</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>A large photonic band gap (PBG) is highly favorable for photonic crystal devices. One of the most important goals of PBG materials research is identifying structural design strategies for maximizing the gap size. We provide a comprehensive analysis of the PBG properties of two-dimensional (2D) quasicrystals (QCs), where rotational symmetry, dielectric fill factor, and structural morphology were varied systematically in order to identify correlations between structure and PBG width at a given dielectric contrast (13:1, Si:air). The transverse electric (TE) and transverse magnetic (TM) PBGs of 12 types of QCs are investigated (588 structures). We discovered a 12mm QC with a 56.5% TE PBG, the largest reported TE PBG for an aperiodic crystal to date. We also report here a QC morphology comprising ''throwing star''-like dielectric domains, with near-circular air cores and interconnecting veins emanating radially around the core. This interesting morphology leads to a complete PBG of {approx}20% , which is the largest reported complete PBG for aperiodic crystals.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CRYSTALS</subject><subject>DIELECTRIC MATERIALS</subject><subject>ENERGY GAP</subject><subject>MORPHOLOGY</subject><subject>PHOTON-ELECTRON INTERACTIONS</subject><subject>SYMMETRY</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo1kEtrwzAQhEVpoWnaP9CToWenetiOdAyhLwg0hPYsZHmNVRwr1cot_ve1cbOXGZhv5zCE3DO6YoyKx30z4AF-NiuZrSgXUrALsmBUZSkrOL-cfE5TrrL1NblB_KLjZVItyGHf-Og7Z5MKOnRxSHydYDQRcHLx16eVO06R70ybfPcGnQ3DSLSt6yA5nd8xht7GPgDekqvatAh3_7okn89PH9vXdPf-8rbd7FIrmIqpoaVlVuZrlvG6YkWuVMkFlVXBjcyhKkvBmKq45FSCMEqZGqgdUwWFhVKJJXmYez1Gp9G6CLaxvuvARs05LcZuMVJ8pmzwiAFqfQruaMKgGdXTdvq8nZaZnrcTf7AJZek</recordid><startdate>20110818</startdate><enddate>20110818</enddate><creator>Jia, Lin</creator><creator>Bita, Ion</creator><creator>Thomas, Edwin L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20110818</creationdate><title>Photonic density of states of two-dimensional quasicrystalline photonic structures</title><author>Jia, Lin ; Bita, Ion ; Thomas, Edwin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a0bc1c857142fd16599b2308d62a85edbb3119d28208e3a99afe0cd629e6ceb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CRYSTALS</topic><topic>DIELECTRIC MATERIALS</topic><topic>ENERGY GAP</topic><topic>MORPHOLOGY</topic><topic>PHOTON-ELECTRON INTERACTIONS</topic><topic>SYMMETRY</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Jia, Lin</creatorcontrib><creatorcontrib>Bita, Ion</creatorcontrib><creatorcontrib>Thomas, Edwin L.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Lin</au><au>Bita, Ion</au><au>Thomas, Edwin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photonic density of states of two-dimensional quasicrystalline photonic structures</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2011-08-18</date><risdate>2011</risdate><volume>84</volume><issue>2</issue><artnum>023831</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>A large photonic band gap (PBG) is highly favorable for photonic crystal devices. One of the most important goals of PBG materials research is identifying structural design strategies for maximizing the gap size. We provide a comprehensive analysis of the PBG properties of two-dimensional (2D) quasicrystals (QCs), where rotational symmetry, dielectric fill factor, and structural morphology were varied systematically in order to identify correlations between structure and PBG width at a given dielectric contrast (13:1, Si:air). The transverse electric (TE) and transverse magnetic (TM) PBGs of 12 types of QCs are investigated (588 structures). We discovered a 12mm QC with a 56.5% TE PBG, the largest reported TE PBG for an aperiodic crystal to date. We also report here a QC morphology comprising ''throwing star''-like dielectric domains, with near-circular air cores and interconnecting veins emanating radially around the core. This interesting morphology leads to a complete PBG of {approx}20% , which is the largest reported complete PBG for aperiodic crystals.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.84.023831</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 2011-08, Vol.84 (2), Article 023831
issn 1050-2947
1094-1622
language eng
recordid cdi_osti_scitechconnect_22068573
source American Physical Society Journals
subjects ATOMIC AND MOLECULAR PHYSICS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CRYSTALS
DIELECTRIC MATERIALS
ENERGY GAP
MORPHOLOGY
PHOTON-ELECTRON INTERACTIONS
SYMMETRY
TWO-DIMENSIONAL CALCULATIONS
title Photonic density of states of two-dimensional quasicrystalline photonic structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A14%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photonic%20density%20of%20states%20of%20two-dimensional%20quasicrystalline%20photonic%20structures&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Jia,%20Lin&rft.date=2011-08-18&rft.volume=84&rft.issue=2&rft.artnum=023831&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.84.023831&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_84_023831%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true