Piezoresistive cantilever force-clamp system
We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2011-04, Vol.82 (4), p.043703-043703-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 043703-10 |
---|---|
container_issue | 4 |
container_start_page | 043703 |
container_title | Review of scientific instruments |
container_volume | 82 |
creator | Park, Sung-Jin Petzold, Bryan C. Goodman, Miriam B. Pruitt, Beth L. |
description | We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, |
doi_str_mv | 10.1063/1.3574362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22062299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>864782351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-e9ae6d317983ce06b10880a6a797f8648abd91590f439bd0f8f26c1a5694a8ea3</originalsourceid><addsrcrecordid>eNqNkctKAzEUhoMotl4WvoAUXIjiaC4zmWQjiHgDQRe6DmnmjEZmJjVJC_XpTW21ulDMJot8fPnP-RHaIfiYYM5OyDErypxxuoL6BAuZlZyyVdTHmOUZL3PRQxshvOB0CkLWUY-SgkqMZR8d3Vt4cx6CDdFOYGB0F20DE_CD2nkDmWl0OxqEaYjQbqG1WjcBthf3Jnq8vHg4v85u765uzs9uM1NIFjOQGnjFSCkFM4D5MGUSWHNdyrIWPBd6WElSSFznTA4rXIuackN0wWWuBWi2iU7n3tF42EJloIteN2rkbav9VDlt1c-Xzj6rJzdRDEvCsEiCvbnApalUMDaCeTau68BERSnmlEqZqP3FN969jiFE1dpgoGl0B24cVIpaCsoKksiDOWm8C8FD_ZWFYDWrQBG1qCCxu9_Df5GfO19ON8ulo3Xd77af7aiPdpLg8N-Cv-CJ80tQjaqavQMmXrJ5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864782351</pqid></control><display><type>article</type><title>Piezoresistive cantilever force-clamp system</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Park, Sung-Jin ; Petzold, Bryan C. ; Goodman, Miriam B. ; Pruitt, Beth L.</creator><creatorcontrib>Park, Sung-Jin ; Petzold, Bryan C. ; Goodman, Miriam B. ; Pruitt, Beth L.</creatorcontrib><description>We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.3574362</identifier><identifier>PMID: 21529009</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ACTUATORS ; AIR ; Animals ; Caenorhabditis elegans - physiology ; Calibration ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; ELECTRIC POTENTIAL ; ELECTROMECHANICS ; Equipment Design ; FEEDBACK ; FLEXIBILITY ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; KHZ RANGE ; Mechanical Phenomena ; Microscopy ; Microscopy and Imaging ; Movement ; NEMATODES ; PIEZOELECTRICITY ; SENSITIVITY ; SENSORS ; Systems Integration ; Time Factors ; WATER</subject><ispartof>Review of scientific instruments, 2011-04, Vol.82 (4), p.043703-043703-10</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><rights>Copyright © 2011 American Institute of Physics 2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-e9ae6d317983ce06b10880a6a797f8648abd91590f439bd0f8f26c1a5694a8ea3</citedby><cites>FETCH-LOGICAL-c593t-e9ae6d317983ce06b10880a6a797f8648abd91590f439bd0f8f26c1a5694a8ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.3574362$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,781,785,795,886,1560,4513,27928,27929,76388,76394</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21529009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22062299$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Sung-Jin</creatorcontrib><creatorcontrib>Petzold, Bryan C.</creatorcontrib><creatorcontrib>Goodman, Miriam B.</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><title>Piezoresistive cantilever force-clamp system</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.</description><subject>ACTUATORS</subject><subject>AIR</subject><subject>Animals</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Calibration</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>ELECTRIC POTENTIAL</subject><subject>ELECTROMECHANICS</subject><subject>Equipment Design</subject><subject>FEEDBACK</subject><subject>FLEXIBILITY</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>KHZ RANGE</subject><subject>Mechanical Phenomena</subject><subject>Microscopy</subject><subject>Microscopy and Imaging</subject><subject>Movement</subject><subject>NEMATODES</subject><subject>PIEZOELECTRICITY</subject><subject>SENSITIVITY</subject><subject>SENSORS</subject><subject>Systems Integration</subject><subject>Time Factors</subject><subject>WATER</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctKAzEUhoMotl4WvoAUXIjiaC4zmWQjiHgDQRe6DmnmjEZmJjVJC_XpTW21ulDMJot8fPnP-RHaIfiYYM5OyDErypxxuoL6BAuZlZyyVdTHmOUZL3PRQxshvOB0CkLWUY-SgkqMZR8d3Vt4cx6CDdFOYGB0F20DE_CD2nkDmWl0OxqEaYjQbqG1WjcBthf3Jnq8vHg4v85u765uzs9uM1NIFjOQGnjFSCkFM4D5MGUSWHNdyrIWPBd6WElSSFznTA4rXIuackN0wWWuBWi2iU7n3tF42EJloIteN2rkbav9VDlt1c-Xzj6rJzdRDEvCsEiCvbnApalUMDaCeTau68BERSnmlEqZqP3FN969jiFE1dpgoGl0B24cVIpaCsoKksiDOWm8C8FD_ZWFYDWrQBG1qCCxu9_Df5GfO19ON8ulo3Xd77af7aiPdpLg8N-Cv-CJ80tQjaqavQMmXrJ5</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Park, Sung-Jin</creator><creator>Petzold, Bryan C.</creator><creator>Goodman, Miriam B.</creator><creator>Pruitt, Beth L.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20110401</creationdate><title>Piezoresistive cantilever force-clamp system</title><author>Park, Sung-Jin ; Petzold, Bryan C. ; Goodman, Miriam B. ; Pruitt, Beth L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-e9ae6d317983ce06b10880a6a797f8648abd91590f439bd0f8f26c1a5694a8ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ACTUATORS</topic><topic>AIR</topic><topic>Animals</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Calibration</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>ELECTRIC POTENTIAL</topic><topic>ELECTROMECHANICS</topic><topic>Equipment Design</topic><topic>FEEDBACK</topic><topic>FLEXIBILITY</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>KHZ RANGE</topic><topic>Mechanical Phenomena</topic><topic>Microscopy</topic><topic>Microscopy and Imaging</topic><topic>Movement</topic><topic>NEMATODES</topic><topic>PIEZOELECTRICITY</topic><topic>SENSITIVITY</topic><topic>SENSORS</topic><topic>Systems Integration</topic><topic>Time Factors</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sung-Jin</creatorcontrib><creatorcontrib>Petzold, Bryan C.</creatorcontrib><creatorcontrib>Goodman, Miriam B.</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sung-Jin</au><au>Petzold, Bryan C.</au><au>Goodman, Miriam B.</au><au>Pruitt, Beth L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezoresistive cantilever force-clamp system</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>82</volume><issue>4</issue><spage>043703</spage><epage>043703-10</epage><pages>043703-043703-10</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>21529009</pmid><doi>10.1063/1.3574362</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2011-04, Vol.82 (4), p.043703-043703-10 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_osti_scitechconnect_22062299 |
source | MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | ACTUATORS AIR Animals Caenorhabditis elegans - physiology Calibration CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ELECTRIC POTENTIAL ELECTROMECHANICS Equipment Design FEEDBACK FLEXIBILITY INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY KHZ RANGE Mechanical Phenomena Microscopy Microscopy and Imaging Movement NEMATODES PIEZOELECTRICITY SENSITIVITY SENSORS Systems Integration Time Factors WATER |
title | Piezoresistive cantilever force-clamp system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezoresistive%20cantilever%20force-clamp%20system&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Park,%20Sung-Jin&rft.date=2011-04-01&rft.volume=82&rft.issue=4&rft.spage=043703&rft.epage=043703-10&rft.pages=043703-043703-10&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.3574362&rft_dat=%3Cproquest_osti_%3E864782351%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864782351&rft_id=info:pmid/21529009&rfr_iscdi=true |