Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone
Purpose For focal boost strategies in the prostate, the robustness of magnetic resonance imaging—based tumor delineations needs to be improved. To this end we developed a statistical model that predicts tumor presence on a voxel level (2.5×2.5×2.5 mm3) inside the peripheral zone. Furthermore, we sho...
Gespeichert in:
Veröffentlicht in: | International journal of radiation oncology, biology, physics biology, physics, 2012-03, Vol.82 (3), p.e537-e544 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e544 |
---|---|
container_issue | 3 |
container_start_page | e537 |
container_title | International journal of radiation oncology, biology, physics |
container_volume | 82 |
creator | Groenendaal, Greetje, M.Sc Borren, Alie, M.D Moman, Maaike R., Ph.D Monninkhof, Evelyn, Ph.D van Diest, Paul J., Ph.D Philippens, Marielle E.P., Ph.D van Vulpen, Marco, Ph.D van der Heide, Uulke A., Ph.D |
description | Purpose For focal boost strategies in the prostate, the robustness of magnetic resonance imaging—based tumor delineations needs to be improved. To this end we developed a statistical model that predicts tumor presence on a voxel level (2.5×2.5×2.5 mm3) inside the peripheral zone. Furthermore, we show how this model can be used to derive a valuable input for radiotherapy treatment planning. Methods and Materials The model was created on 87 radiotherapy patients. For the validation of the voxelwise performance of the model, an independent group of 12 prostatectomy patients was used. After model validation, the model was stratified to create three different risk levels for tumor presence: gross tumor volume (GTV), high-risk clinical target volume (CTV), and low-risk CTV. Results The model gave an area under the receiver operating characteristic curve of 0.70 for the prediction of tumor presence in the prostatectomy group. When the registration error between magnetic resonance images and pathologic delineation was taken into account, the area under the curve further improved to 0.89. We propose that model outcome values with a high positive predictive value can be used to define the GTV. Model outcome values with a high negative predictive value can be used to define low-risk CTV regions. The intermediate outcome values can be used to define a high-risk CTV. Conclusions We developed a logistic regression with a high diagnostic performance for voxelwise prediction of tumor presence. The model output can be used to define different risk levels for tumor presence, which in turn could serve as an input for dose planning. In this way the robustness of tumor delineations for focal boost therapy can be greatly improved. |
doi_str_mv | 10.1016/j.ijrobp.2011.07.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22056145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360301611030914</els_id><sourcerecordid>1687665395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-766922c0646e2e0b5ea49a5d1004fb1e3cc19b3128858ebb592d17479df28373</originalsourceid><addsrcrecordid>eNqFks1u1DAQxyMEoqXwBghZ4gCXLLbz6QtS2S1QqRUVrABxsRxnsvGS2IvtIO1z8YJMlNIDB7jY1sxvPv9OkqeMrhhl5av9yuy9aw4rThlb0WpFObuXnLK6EmlWFF_vJ6c0K2maIXySPAphTymSVf4wOeGciYrWxWny60bF3g1uZzT5rAbTqmicJa4jily7FgbyRgVoCdo2puumgN70C5hdH9F6OaqdsTuibEs2R6tGzLJ2NnoVYnphe2U1UtdqZyGi6yMEZ2fbXWDnPNlOI54bGIyFpbqxJPZAbrwLUUV8gDeHHrwayDdn4XHyoFNDgCe391myfXuxXb9Prz68u1yfX6U6r6qYVmUpONe0zEvgQJsCVC5U0TJK865hkGnNRJMxXtdFDU1TCN7ieirRdrzOquwseb6kxS6MDNpE0L121oKOknNalCwvkHqxUAfvfkwQohxN0DAMyoKbghSsFllWcIrky3-SrKyx5SITc9J8QTWuIHjo5MGbUfmjZFTO6su9XNSXs_qSVhLVx7BntxWmZoT2LuiP3Ai8XgDAtf004OexYBbJ-Hmq1pn_Vfg7gUbZjFbDdzhC2LvJW5REMhm4pPLT_APnD8gYXoLl2W9hutg9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687665395</pqid></control><display><type>article</type><title>Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Groenendaal, Greetje, M.Sc ; Borren, Alie, M.D ; Moman, Maaike R., Ph.D ; Monninkhof, Evelyn, Ph.D ; van Diest, Paul J., Ph.D ; Philippens, Marielle E.P., Ph.D ; van Vulpen, Marco, Ph.D ; van der Heide, Uulke A., Ph.D</creator><creatorcontrib>Groenendaal, Greetje, M.Sc ; Borren, Alie, M.D ; Moman, Maaike R., Ph.D ; Monninkhof, Evelyn, Ph.D ; van Diest, Paul J., Ph.D ; Philippens, Marielle E.P., Ph.D ; van Vulpen, Marco, Ph.D ; van der Heide, Uulke A., Ph.D</creatorcontrib><description>Purpose For focal boost strategies in the prostate, the robustness of magnetic resonance imaging—based tumor delineations needs to be improved. To this end we developed a statistical model that predicts tumor presence on a voxel level (2.5×2.5×2.5 mm3) inside the peripheral zone. Furthermore, we show how this model can be used to derive a valuable input for radiotherapy treatment planning. Methods and Materials The model was created on 87 radiotherapy patients. For the validation of the voxelwise performance of the model, an independent group of 12 prostatectomy patients was used. After model validation, the model was stratified to create three different risk levels for tumor presence: gross tumor volume (GTV), high-risk clinical target volume (CTV), and low-risk CTV. Results The model gave an area under the receiver operating characteristic curve of 0.70 for the prediction of tumor presence in the prostatectomy group. When the registration error between magnetic resonance images and pathologic delineation was taken into account, the area under the curve further improved to 0.89. We propose that model outcome values with a high positive predictive value can be used to define the GTV. Model outcome values with a high negative predictive value can be used to define low-risk CTV regions. The intermediate outcome values can be used to define a high-risk CTV. Conclusions We developed a logistic regression with a high diagnostic performance for voxelwise prediction of tumor presence. The model output can be used to define different risk levels for tumor presence, which in turn could serve as an input for dose planning. In this way the robustness of tumor delineations for focal boost therapy can be greatly improved.</description><identifier>ISSN: 0360-3016</identifier><identifier>EISSN: 1879-355X</identifier><identifier>DOI: 10.1016/j.ijrobp.2011.07.021</identifier><identifier>PMID: 22197085</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Area Under Curve ; Contrast Media ; DIFFUSION ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion-weighted imaging ; Dynamic contrast-enhanced magnetic resonance imaging ; Focal boost dose ; Gross tumor volume delineation ; HAZARDS ; Hematology, Oncology and Palliative Medicine ; Humans ; Logistic Models ; MAGNETIC RESONANCE ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; Models, Statistical ; NEOPLASMS ; NMR IMAGING ; PATIENTS ; PLANNING ; PROSTATE ; Prostate - pathology ; Prostate - surgery ; Prostate-Specific Antigen - blood ; Prostatectomy ; Prostatic Neoplasms - blood ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - radiotherapy ; Prostatic Neoplasms - surgery ; RADIATION DOSES ; Radiology ; RADIOLOGY AND NUCLEAR MEDICINE ; RADIOTHERAPY ; Radiotherapy Planning, Computer-Assisted - methods ; ROC Curve ; STATISTICAL MODELS ; Tumor Burden ; VALIDATION</subject><ispartof>International journal of radiation oncology, biology, physics, 2012-03, Vol.82 (3), p.e537-e544</ispartof><rights>Elsevier Inc.</rights><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-766922c0646e2e0b5ea49a5d1004fb1e3cc19b3128858ebb592d17479df28373</citedby><cites>FETCH-LOGICAL-c477t-766922c0646e2e0b5ea49a5d1004fb1e3cc19b3128858ebb592d17479df28373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrobp.2011.07.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22197085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22056145$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Groenendaal, Greetje, M.Sc</creatorcontrib><creatorcontrib>Borren, Alie, M.D</creatorcontrib><creatorcontrib>Moman, Maaike R., Ph.D</creatorcontrib><creatorcontrib>Monninkhof, Evelyn, Ph.D</creatorcontrib><creatorcontrib>van Diest, Paul J., Ph.D</creatorcontrib><creatorcontrib>Philippens, Marielle E.P., Ph.D</creatorcontrib><creatorcontrib>van Vulpen, Marco, Ph.D</creatorcontrib><creatorcontrib>van der Heide, Uulke A., Ph.D</creatorcontrib><title>Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone</title><title>International journal of radiation oncology, biology, physics</title><addtitle>Int J Radiat Oncol Biol Phys</addtitle><description>Purpose For focal boost strategies in the prostate, the robustness of magnetic resonance imaging—based tumor delineations needs to be improved. To this end we developed a statistical model that predicts tumor presence on a voxel level (2.5×2.5×2.5 mm3) inside the peripheral zone. Furthermore, we show how this model can be used to derive a valuable input for radiotherapy treatment planning. Methods and Materials The model was created on 87 radiotherapy patients. For the validation of the voxelwise performance of the model, an independent group of 12 prostatectomy patients was used. After model validation, the model was stratified to create three different risk levels for tumor presence: gross tumor volume (GTV), high-risk clinical target volume (CTV), and low-risk CTV. Results The model gave an area under the receiver operating characteristic curve of 0.70 for the prediction of tumor presence in the prostatectomy group. When the registration error between magnetic resonance images and pathologic delineation was taken into account, the area under the curve further improved to 0.89. We propose that model outcome values with a high positive predictive value can be used to define the GTV. Model outcome values with a high negative predictive value can be used to define low-risk CTV regions. The intermediate outcome values can be used to define a high-risk CTV. Conclusions We developed a logistic regression with a high diagnostic performance for voxelwise prediction of tumor presence. The model output can be used to define different risk levels for tumor presence, which in turn could serve as an input for dose planning. In this way the robustness of tumor delineations for focal boost therapy can be greatly improved.</description><subject>Aged</subject><subject>Area Under Curve</subject><subject>Contrast Media</subject><subject>DIFFUSION</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion-weighted imaging</subject><subject>Dynamic contrast-enhanced magnetic resonance imaging</subject><subject>Focal boost dose</subject><subject>Gross tumor volume delineation</subject><subject>HAZARDS</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>MAGNETIC RESONANCE</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>NEOPLASMS</subject><subject>NMR IMAGING</subject><subject>PATIENTS</subject><subject>PLANNING</subject><subject>PROSTATE</subject><subject>Prostate - pathology</subject><subject>Prostate - surgery</subject><subject>Prostate-Specific Antigen - blood</subject><subject>Prostatectomy</subject><subject>Prostatic Neoplasms - blood</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - radiotherapy</subject><subject>Prostatic Neoplasms - surgery</subject><subject>RADIATION DOSES</subject><subject>Radiology</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>ROC Curve</subject><subject>STATISTICAL MODELS</subject><subject>Tumor Burden</subject><subject>VALIDATION</subject><issn>0360-3016</issn><issn>1879-355X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAQxyMEoqXwBghZ4gCXLLbz6QtS2S1QqRUVrABxsRxnsvGS2IvtIO1z8YJMlNIDB7jY1sxvPv9OkqeMrhhl5av9yuy9aw4rThlb0WpFObuXnLK6EmlWFF_vJ6c0K2maIXySPAphTymSVf4wOeGciYrWxWny60bF3g1uZzT5rAbTqmicJa4jily7FgbyRgVoCdo2puumgN70C5hdH9F6OaqdsTuibEs2R6tGzLJ2NnoVYnphe2U1UtdqZyGi6yMEZ2fbXWDnPNlOI54bGIyFpbqxJPZAbrwLUUV8gDeHHrwayDdn4XHyoFNDgCe391myfXuxXb9Prz68u1yfX6U6r6qYVmUpONe0zEvgQJsCVC5U0TJK865hkGnNRJMxXtdFDU1TCN7ieirRdrzOquwseb6kxS6MDNpE0L121oKOknNalCwvkHqxUAfvfkwQohxN0DAMyoKbghSsFllWcIrky3-SrKyx5SITc9J8QTWuIHjo5MGbUfmjZFTO6su9XNSXs_qSVhLVx7BntxWmZoT2LuiP3Ai8XgDAtf004OexYBbJ-Hmq1pn_Vfg7gUbZjFbDdzhC2LvJW5REMhm4pPLT_APnD8gYXoLl2W9hutg9</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Groenendaal, Greetje, M.Sc</creator><creator>Borren, Alie, M.D</creator><creator>Moman, Maaike R., Ph.D</creator><creator>Monninkhof, Evelyn, Ph.D</creator><creator>van Diest, Paul J., Ph.D</creator><creator>Philippens, Marielle E.P., Ph.D</creator><creator>van Vulpen, Marco, Ph.D</creator><creator>van der Heide, Uulke A., Ph.D</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20120301</creationdate><title>Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone</title><author>Groenendaal, Greetje, M.Sc ; Borren, Alie, M.D ; Moman, Maaike R., Ph.D ; Monninkhof, Evelyn, Ph.D ; van Diest, Paul J., Ph.D ; Philippens, Marielle E.P., Ph.D ; van Vulpen, Marco, Ph.D ; van der Heide, Uulke A., Ph.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-766922c0646e2e0b5ea49a5d1004fb1e3cc19b3128858ebb592d17479df28373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aged</topic><topic>Area Under Curve</topic><topic>Contrast Media</topic><topic>DIFFUSION</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion-weighted imaging</topic><topic>Dynamic contrast-enhanced magnetic resonance imaging</topic><topic>Focal boost dose</topic><topic>Gross tumor volume delineation</topic><topic>HAZARDS</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>MAGNETIC RESONANCE</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>NEOPLASMS</topic><topic>NMR IMAGING</topic><topic>PATIENTS</topic><topic>PLANNING</topic><topic>PROSTATE</topic><topic>Prostate - pathology</topic><topic>Prostate - surgery</topic><topic>Prostate-Specific Antigen - blood</topic><topic>Prostatectomy</topic><topic>Prostatic Neoplasms - blood</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - radiotherapy</topic><topic>Prostatic Neoplasms - surgery</topic><topic>RADIATION DOSES</topic><topic>Radiology</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>ROC Curve</topic><topic>STATISTICAL MODELS</topic><topic>Tumor Burden</topic><topic>VALIDATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groenendaal, Greetje, M.Sc</creatorcontrib><creatorcontrib>Borren, Alie, M.D</creatorcontrib><creatorcontrib>Moman, Maaike R., Ph.D</creatorcontrib><creatorcontrib>Monninkhof, Evelyn, Ph.D</creatorcontrib><creatorcontrib>van Diest, Paul J., Ph.D</creatorcontrib><creatorcontrib>Philippens, Marielle E.P., Ph.D</creatorcontrib><creatorcontrib>van Vulpen, Marco, Ph.D</creatorcontrib><creatorcontrib>van der Heide, Uulke A., Ph.D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>International journal of radiation oncology, biology, physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groenendaal, Greetje, M.Sc</au><au>Borren, Alie, M.D</au><au>Moman, Maaike R., Ph.D</au><au>Monninkhof, Evelyn, Ph.D</au><au>van Diest, Paul J., Ph.D</au><au>Philippens, Marielle E.P., Ph.D</au><au>van Vulpen, Marco, Ph.D</au><au>van der Heide, Uulke A., Ph.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone</atitle><jtitle>International journal of radiation oncology, biology, physics</jtitle><addtitle>Int J Radiat Oncol Biol Phys</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>82</volume><issue>3</issue><spage>e537</spage><epage>e544</epage><pages>e537-e544</pages><issn>0360-3016</issn><eissn>1879-355X</eissn><abstract>Purpose For focal boost strategies in the prostate, the robustness of magnetic resonance imaging—based tumor delineations needs to be improved. To this end we developed a statistical model that predicts tumor presence on a voxel level (2.5×2.5×2.5 mm3) inside the peripheral zone. Furthermore, we show how this model can be used to derive a valuable input for radiotherapy treatment planning. Methods and Materials The model was created on 87 radiotherapy patients. For the validation of the voxelwise performance of the model, an independent group of 12 prostatectomy patients was used. After model validation, the model was stratified to create three different risk levels for tumor presence: gross tumor volume (GTV), high-risk clinical target volume (CTV), and low-risk CTV. Results The model gave an area under the receiver operating characteristic curve of 0.70 for the prediction of tumor presence in the prostatectomy group. When the registration error between magnetic resonance images and pathologic delineation was taken into account, the area under the curve further improved to 0.89. We propose that model outcome values with a high positive predictive value can be used to define the GTV. Model outcome values with a high negative predictive value can be used to define low-risk CTV regions. The intermediate outcome values can be used to define a high-risk CTV. Conclusions We developed a logistic regression with a high diagnostic performance for voxelwise prediction of tumor presence. The model output can be used to define different risk levels for tumor presence, which in turn could serve as an input for dose planning. In this way the robustness of tumor delineations for focal boost therapy can be greatly improved.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22197085</pmid><doi>10.1016/j.ijrobp.2011.07.021</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3016 |
ispartof | International journal of radiation oncology, biology, physics, 2012-03, Vol.82 (3), p.e537-e544 |
issn | 0360-3016 1879-355X |
language | eng |
recordid | cdi_osti_scitechconnect_22056145 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Aged Area Under Curve Contrast Media DIFFUSION Diffusion Magnetic Resonance Imaging - methods Diffusion-weighted imaging Dynamic contrast-enhanced magnetic resonance imaging Focal boost dose Gross tumor volume delineation HAZARDS Hematology, Oncology and Palliative Medicine Humans Logistic Models MAGNETIC RESONANCE Magnetic Resonance Imaging - methods Male Middle Aged Models, Statistical NEOPLASMS NMR IMAGING PATIENTS PLANNING PROSTATE Prostate - pathology Prostate - surgery Prostate-Specific Antigen - blood Prostatectomy Prostatic Neoplasms - blood Prostatic Neoplasms - pathology Prostatic Neoplasms - radiotherapy Prostatic Neoplasms - surgery RADIATION DOSES Radiology RADIOLOGY AND NUCLEAR MEDICINE RADIOTHERAPY Radiotherapy Planning, Computer-Assisted - methods ROC Curve STATISTICAL MODELS Tumor Burden VALIDATION |
title | Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathologic%20Validation%20of%20a%20Model%20Based%20on%20Diffusion-Weighted%20Imaging%20and%20Dynamic%20Contrast-Enhanced%20Magnetic%20Resonance%20Imaging%20for%20Tumor%20Delineation%20in%20the%20Prostate%20Peripheral%20Zone&rft.jtitle=International%20journal%20of%20radiation%20oncology,%20biology,%20physics&rft.au=Groenendaal,%20Greetje,%20M.Sc&rft.date=2012-03-01&rft.volume=82&rft.issue=3&rft.spage=e537&rft.epage=e544&rft.pages=e537-e544&rft.issn=0360-3016&rft.eissn=1879-355X&rft_id=info:doi/10.1016/j.ijrobp.2011.07.021&rft_dat=%3Cproquest_osti_%3E1687665395%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687665395&rft_id=info:pmid/22197085&rft_els_id=S0360301611030914&rfr_iscdi=true |