Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone

Purpose For focal boost strategies in the prostate, the robustness of magnetic resonance imaging—based tumor delineations needs to be improved. To this end we developed a statistical model that predicts tumor presence on a voxel level (2.5×2.5×2.5 mm3) inside the peripheral zone. Furthermore, we sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation oncology, biology, physics biology, physics, 2012-03, Vol.82 (3), p.e537-e544
Hauptverfasser: Groenendaal, Greetje, M.Sc, Borren, Alie, M.D, Moman, Maaike R., Ph.D, Monninkhof, Evelyn, Ph.D, van Diest, Paul J., Ph.D, Philippens, Marielle E.P., Ph.D, van Vulpen, Marco, Ph.D, van der Heide, Uulke A., Ph.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e544
container_issue 3
container_start_page e537
container_title International journal of radiation oncology, biology, physics
container_volume 82
creator Groenendaal, Greetje, M.Sc
Borren, Alie, M.D
Moman, Maaike R., Ph.D
Monninkhof, Evelyn, Ph.D
van Diest, Paul J., Ph.D
Philippens, Marielle E.P., Ph.D
van Vulpen, Marco, Ph.D
van der Heide, Uulke A., Ph.D
description Purpose For focal boost strategies in the prostate, the robustness of magnetic resonance imaging—based tumor delineations needs to be improved. To this end we developed a statistical model that predicts tumor presence on a voxel level (2.5×2.5×2.5 mm3) inside the peripheral zone. Furthermore, we show how this model can be used to derive a valuable input for radiotherapy treatment planning. Methods and Materials The model was created on 87 radiotherapy patients. For the validation of the voxelwise performance of the model, an independent group of 12 prostatectomy patients was used. After model validation, the model was stratified to create three different risk levels for tumor presence: gross tumor volume (GTV), high-risk clinical target volume (CTV), and low-risk CTV. Results The model gave an area under the receiver operating characteristic curve of 0.70 for the prediction of tumor presence in the prostatectomy group. When the registration error between magnetic resonance images and pathologic delineation was taken into account, the area under the curve further improved to 0.89. We propose that model outcome values with a high positive predictive value can be used to define the GTV. Model outcome values with a high negative predictive value can be used to define low-risk CTV regions. The intermediate outcome values can be used to define a high-risk CTV. Conclusions We developed a logistic regression with a high diagnostic performance for voxelwise prediction of tumor presence. The model output can be used to define different risk levels for tumor presence, which in turn could serve as an input for dose planning. In this way the robustness of tumor delineations for focal boost therapy can be greatly improved.
doi_str_mv 10.1016/j.ijrobp.2011.07.021
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22056145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360301611030914</els_id><sourcerecordid>1687665395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-766922c0646e2e0b5ea49a5d1004fb1e3cc19b3128858ebb592d17479df28373</originalsourceid><addsrcrecordid>eNqFks1u1DAQxyMEoqXwBghZ4gCXLLbz6QtS2S1QqRUVrABxsRxnsvGS2IvtIO1z8YJMlNIDB7jY1sxvPv9OkqeMrhhl5av9yuy9aw4rThlb0WpFObuXnLK6EmlWFF_vJ6c0K2maIXySPAphTymSVf4wOeGciYrWxWny60bF3g1uZzT5rAbTqmicJa4jily7FgbyRgVoCdo2puumgN70C5hdH9F6OaqdsTuibEs2R6tGzLJ2NnoVYnphe2U1UtdqZyGi6yMEZ2fbXWDnPNlOI54bGIyFpbqxJPZAbrwLUUV8gDeHHrwayDdn4XHyoFNDgCe391myfXuxXb9Prz68u1yfX6U6r6qYVmUpONe0zEvgQJsCVC5U0TJK865hkGnNRJMxXtdFDU1TCN7ieirRdrzOquwseb6kxS6MDNpE0L121oKOknNalCwvkHqxUAfvfkwQohxN0DAMyoKbghSsFllWcIrky3-SrKyx5SITc9J8QTWuIHjo5MGbUfmjZFTO6su9XNSXs_qSVhLVx7BntxWmZoT2LuiP3Ai8XgDAtf004OexYBbJ-Hmq1pn_Vfg7gUbZjFbDdzhC2LvJW5REMhm4pPLT_APnD8gYXoLl2W9hutg9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687665395</pqid></control><display><type>article</type><title>Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Groenendaal, Greetje, M.Sc ; Borren, Alie, M.D ; Moman, Maaike R., Ph.D ; Monninkhof, Evelyn, Ph.D ; van Diest, Paul J., Ph.D ; Philippens, Marielle E.P., Ph.D ; van Vulpen, Marco, Ph.D ; van der Heide, Uulke A., Ph.D</creator><creatorcontrib>Groenendaal, Greetje, M.Sc ; Borren, Alie, M.D ; Moman, Maaike R., Ph.D ; Monninkhof, Evelyn, Ph.D ; van Diest, Paul J., Ph.D ; Philippens, Marielle E.P., Ph.D ; van Vulpen, Marco, Ph.D ; van der Heide, Uulke A., Ph.D</creatorcontrib><description>Purpose For focal boost strategies in the prostate, the robustness of magnetic resonance imaging—based tumor delineations needs to be improved. To this end we developed a statistical model that predicts tumor presence on a voxel level (2.5×2.5×2.5 mm3) inside the peripheral zone. Furthermore, we show how this model can be used to derive a valuable input for radiotherapy treatment planning. Methods and Materials The model was created on 87 radiotherapy patients. For the validation of the voxelwise performance of the model, an independent group of 12 prostatectomy patients was used. After model validation, the model was stratified to create three different risk levels for tumor presence: gross tumor volume (GTV), high-risk clinical target volume (CTV), and low-risk CTV. Results The model gave an area under the receiver operating characteristic curve of 0.70 for the prediction of tumor presence in the prostatectomy group. When the registration error between magnetic resonance images and pathologic delineation was taken into account, the area under the curve further improved to 0.89. We propose that model outcome values with a high positive predictive value can be used to define the GTV. Model outcome values with a high negative predictive value can be used to define low-risk CTV regions. The intermediate outcome values can be used to define a high-risk CTV. Conclusions We developed a logistic regression with a high diagnostic performance for voxelwise prediction of tumor presence. The model output can be used to define different risk levels for tumor presence, which in turn could serve as an input for dose planning. In this way the robustness of tumor delineations for focal boost therapy can be greatly improved.</description><identifier>ISSN: 0360-3016</identifier><identifier>EISSN: 1879-355X</identifier><identifier>DOI: 10.1016/j.ijrobp.2011.07.021</identifier><identifier>PMID: 22197085</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Area Under Curve ; Contrast Media ; DIFFUSION ; Diffusion Magnetic Resonance Imaging - methods ; Diffusion-weighted imaging ; Dynamic contrast-enhanced magnetic resonance imaging ; Focal boost dose ; Gross tumor volume delineation ; HAZARDS ; Hematology, Oncology and Palliative Medicine ; Humans ; Logistic Models ; MAGNETIC RESONANCE ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; Models, Statistical ; NEOPLASMS ; NMR IMAGING ; PATIENTS ; PLANNING ; PROSTATE ; Prostate - pathology ; Prostate - surgery ; Prostate-Specific Antigen - blood ; Prostatectomy ; Prostatic Neoplasms - blood ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - radiotherapy ; Prostatic Neoplasms - surgery ; RADIATION DOSES ; Radiology ; RADIOLOGY AND NUCLEAR MEDICINE ; RADIOTHERAPY ; Radiotherapy Planning, Computer-Assisted - methods ; ROC Curve ; STATISTICAL MODELS ; Tumor Burden ; VALIDATION</subject><ispartof>International journal of radiation oncology, biology, physics, 2012-03, Vol.82 (3), p.e537-e544</ispartof><rights>Elsevier Inc.</rights><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-766922c0646e2e0b5ea49a5d1004fb1e3cc19b3128858ebb592d17479df28373</citedby><cites>FETCH-LOGICAL-c477t-766922c0646e2e0b5ea49a5d1004fb1e3cc19b3128858ebb592d17479df28373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrobp.2011.07.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22197085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22056145$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Groenendaal, Greetje, M.Sc</creatorcontrib><creatorcontrib>Borren, Alie, M.D</creatorcontrib><creatorcontrib>Moman, Maaike R., Ph.D</creatorcontrib><creatorcontrib>Monninkhof, Evelyn, Ph.D</creatorcontrib><creatorcontrib>van Diest, Paul J., Ph.D</creatorcontrib><creatorcontrib>Philippens, Marielle E.P., Ph.D</creatorcontrib><creatorcontrib>van Vulpen, Marco, Ph.D</creatorcontrib><creatorcontrib>van der Heide, Uulke A., Ph.D</creatorcontrib><title>Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone</title><title>International journal of radiation oncology, biology, physics</title><addtitle>Int J Radiat Oncol Biol Phys</addtitle><description>Purpose For focal boost strategies in the prostate, the robustness of magnetic resonance imaging—based tumor delineations needs to be improved. To this end we developed a statistical model that predicts tumor presence on a voxel level (2.5×2.5×2.5 mm3) inside the peripheral zone. Furthermore, we show how this model can be used to derive a valuable input for radiotherapy treatment planning. Methods and Materials The model was created on 87 radiotherapy patients. For the validation of the voxelwise performance of the model, an independent group of 12 prostatectomy patients was used. After model validation, the model was stratified to create three different risk levels for tumor presence: gross tumor volume (GTV), high-risk clinical target volume (CTV), and low-risk CTV. Results The model gave an area under the receiver operating characteristic curve of 0.70 for the prediction of tumor presence in the prostatectomy group. When the registration error between magnetic resonance images and pathologic delineation was taken into account, the area under the curve further improved to 0.89. We propose that model outcome values with a high positive predictive value can be used to define the GTV. Model outcome values with a high negative predictive value can be used to define low-risk CTV regions. The intermediate outcome values can be used to define a high-risk CTV. Conclusions We developed a logistic regression with a high diagnostic performance for voxelwise prediction of tumor presence. The model output can be used to define different risk levels for tumor presence, which in turn could serve as an input for dose planning. In this way the robustness of tumor delineations for focal boost therapy can be greatly improved.</description><subject>Aged</subject><subject>Area Under Curve</subject><subject>Contrast Media</subject><subject>DIFFUSION</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Diffusion-weighted imaging</subject><subject>Dynamic contrast-enhanced magnetic resonance imaging</subject><subject>Focal boost dose</subject><subject>Gross tumor volume delineation</subject><subject>HAZARDS</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>MAGNETIC RESONANCE</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>NEOPLASMS</subject><subject>NMR IMAGING</subject><subject>PATIENTS</subject><subject>PLANNING</subject><subject>PROSTATE</subject><subject>Prostate - pathology</subject><subject>Prostate - surgery</subject><subject>Prostate-Specific Antigen - blood</subject><subject>Prostatectomy</subject><subject>Prostatic Neoplasms - blood</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - radiotherapy</subject><subject>Prostatic Neoplasms - surgery</subject><subject>RADIATION DOSES</subject><subject>Radiology</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>ROC Curve</subject><subject>STATISTICAL MODELS</subject><subject>Tumor Burden</subject><subject>VALIDATION</subject><issn>0360-3016</issn><issn>1879-355X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAQxyMEoqXwBghZ4gCXLLbz6QtS2S1QqRUVrABxsRxnsvGS2IvtIO1z8YJMlNIDB7jY1sxvPv9OkqeMrhhl5av9yuy9aw4rThlb0WpFObuXnLK6EmlWFF_vJ6c0K2maIXySPAphTymSVf4wOeGciYrWxWny60bF3g1uZzT5rAbTqmicJa4jily7FgbyRgVoCdo2puumgN70C5hdH9F6OaqdsTuibEs2R6tGzLJ2NnoVYnphe2U1UtdqZyGi6yMEZ2fbXWDnPNlOI54bGIyFpbqxJPZAbrwLUUV8gDeHHrwayDdn4XHyoFNDgCe391myfXuxXb9Prz68u1yfX6U6r6qYVmUpONe0zEvgQJsCVC5U0TJK865hkGnNRJMxXtdFDU1TCN7ieirRdrzOquwseb6kxS6MDNpE0L121oKOknNalCwvkHqxUAfvfkwQohxN0DAMyoKbghSsFllWcIrky3-SrKyx5SITc9J8QTWuIHjo5MGbUfmjZFTO6su9XNSXs_qSVhLVx7BntxWmZoT2LuiP3Ai8XgDAtf004OexYBbJ-Hmq1pn_Vfg7gUbZjFbDdzhC2LvJW5REMhm4pPLT_APnD8gYXoLl2W9hutg9</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Groenendaal, Greetje, M.Sc</creator><creator>Borren, Alie, M.D</creator><creator>Moman, Maaike R., Ph.D</creator><creator>Monninkhof, Evelyn, Ph.D</creator><creator>van Diest, Paul J., Ph.D</creator><creator>Philippens, Marielle E.P., Ph.D</creator><creator>van Vulpen, Marco, Ph.D</creator><creator>van der Heide, Uulke A., Ph.D</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20120301</creationdate><title>Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone</title><author>Groenendaal, Greetje, M.Sc ; Borren, Alie, M.D ; Moman, Maaike R., Ph.D ; Monninkhof, Evelyn, Ph.D ; van Diest, Paul J., Ph.D ; Philippens, Marielle E.P., Ph.D ; van Vulpen, Marco, Ph.D ; van der Heide, Uulke A., Ph.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-766922c0646e2e0b5ea49a5d1004fb1e3cc19b3128858ebb592d17479df28373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aged</topic><topic>Area Under Curve</topic><topic>Contrast Media</topic><topic>DIFFUSION</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Diffusion-weighted imaging</topic><topic>Dynamic contrast-enhanced magnetic resonance imaging</topic><topic>Focal boost dose</topic><topic>Gross tumor volume delineation</topic><topic>HAZARDS</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>MAGNETIC RESONANCE</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>NEOPLASMS</topic><topic>NMR IMAGING</topic><topic>PATIENTS</topic><topic>PLANNING</topic><topic>PROSTATE</topic><topic>Prostate - pathology</topic><topic>Prostate - surgery</topic><topic>Prostate-Specific Antigen - blood</topic><topic>Prostatectomy</topic><topic>Prostatic Neoplasms - blood</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - radiotherapy</topic><topic>Prostatic Neoplasms - surgery</topic><topic>RADIATION DOSES</topic><topic>Radiology</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>ROC Curve</topic><topic>STATISTICAL MODELS</topic><topic>Tumor Burden</topic><topic>VALIDATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groenendaal, Greetje, M.Sc</creatorcontrib><creatorcontrib>Borren, Alie, M.D</creatorcontrib><creatorcontrib>Moman, Maaike R., Ph.D</creatorcontrib><creatorcontrib>Monninkhof, Evelyn, Ph.D</creatorcontrib><creatorcontrib>van Diest, Paul J., Ph.D</creatorcontrib><creatorcontrib>Philippens, Marielle E.P., Ph.D</creatorcontrib><creatorcontrib>van Vulpen, Marco, Ph.D</creatorcontrib><creatorcontrib>van der Heide, Uulke A., Ph.D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>International journal of radiation oncology, biology, physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groenendaal, Greetje, M.Sc</au><au>Borren, Alie, M.D</au><au>Moman, Maaike R., Ph.D</au><au>Monninkhof, Evelyn, Ph.D</au><au>van Diest, Paul J., Ph.D</au><au>Philippens, Marielle E.P., Ph.D</au><au>van Vulpen, Marco, Ph.D</au><au>van der Heide, Uulke A., Ph.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone</atitle><jtitle>International journal of radiation oncology, biology, physics</jtitle><addtitle>Int J Radiat Oncol Biol Phys</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>82</volume><issue>3</issue><spage>e537</spage><epage>e544</epage><pages>e537-e544</pages><issn>0360-3016</issn><eissn>1879-355X</eissn><abstract>Purpose For focal boost strategies in the prostate, the robustness of magnetic resonance imaging—based tumor delineations needs to be improved. To this end we developed a statistical model that predicts tumor presence on a voxel level (2.5×2.5×2.5 mm3) inside the peripheral zone. Furthermore, we show how this model can be used to derive a valuable input for radiotherapy treatment planning. Methods and Materials The model was created on 87 radiotherapy patients. For the validation of the voxelwise performance of the model, an independent group of 12 prostatectomy patients was used. After model validation, the model was stratified to create three different risk levels for tumor presence: gross tumor volume (GTV), high-risk clinical target volume (CTV), and low-risk CTV. Results The model gave an area under the receiver operating characteristic curve of 0.70 for the prediction of tumor presence in the prostatectomy group. When the registration error between magnetic resonance images and pathologic delineation was taken into account, the area under the curve further improved to 0.89. We propose that model outcome values with a high positive predictive value can be used to define the GTV. Model outcome values with a high negative predictive value can be used to define low-risk CTV regions. The intermediate outcome values can be used to define a high-risk CTV. Conclusions We developed a logistic regression with a high diagnostic performance for voxelwise prediction of tumor presence. The model output can be used to define different risk levels for tumor presence, which in turn could serve as an input for dose planning. In this way the robustness of tumor delineations for focal boost therapy can be greatly improved.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22197085</pmid><doi>10.1016/j.ijrobp.2011.07.021</doi></addata></record>
fulltext fulltext
identifier ISSN: 0360-3016
ispartof International journal of radiation oncology, biology, physics, 2012-03, Vol.82 (3), p.e537-e544
issn 0360-3016
1879-355X
language eng
recordid cdi_osti_scitechconnect_22056145
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Aged
Area Under Curve
Contrast Media
DIFFUSION
Diffusion Magnetic Resonance Imaging - methods
Diffusion-weighted imaging
Dynamic contrast-enhanced magnetic resonance imaging
Focal boost dose
Gross tumor volume delineation
HAZARDS
Hematology, Oncology and Palliative Medicine
Humans
Logistic Models
MAGNETIC RESONANCE
Magnetic Resonance Imaging - methods
Male
Middle Aged
Models, Statistical
NEOPLASMS
NMR IMAGING
PATIENTS
PLANNING
PROSTATE
Prostate - pathology
Prostate - surgery
Prostate-Specific Antigen - blood
Prostatectomy
Prostatic Neoplasms - blood
Prostatic Neoplasms - pathology
Prostatic Neoplasms - radiotherapy
Prostatic Neoplasms - surgery
RADIATION DOSES
Radiology
RADIOLOGY AND NUCLEAR MEDICINE
RADIOTHERAPY
Radiotherapy Planning, Computer-Assisted - methods
ROC Curve
STATISTICAL MODELS
Tumor Burden
VALIDATION
title Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathologic%20Validation%20of%20a%20Model%20Based%20on%20Diffusion-Weighted%20Imaging%20and%20Dynamic%20Contrast-Enhanced%20Magnetic%20Resonance%20Imaging%20for%20Tumor%20Delineation%20in%20the%20Prostate%20Peripheral%20Zone&rft.jtitle=International%20journal%20of%20radiation%20oncology,%20biology,%20physics&rft.au=Groenendaal,%20Greetje,%20M.Sc&rft.date=2012-03-01&rft.volume=82&rft.issue=3&rft.spage=e537&rft.epage=e544&rft.pages=e537-e544&rft.issn=0360-3016&rft.eissn=1879-355X&rft_id=info:doi/10.1016/j.ijrobp.2011.07.021&rft_dat=%3Cproquest_osti_%3E1687665395%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687665395&rft_id=info:pmid/22197085&rft_els_id=S0360301611030914&rfr_iscdi=true