MIVOC method with temperature control

The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences has been used for cancer therapy, physics, and biology experiments since 1994. Its ion sources produce carbon ion for cancer therapy. They also produce various ions ( H + - Xe 21 + ) for physics and biology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2010-02, Vol.81 (2), p.02A329-02A329-3
Hauptverfasser: Takasugi, W., Wakaisami, M., Sasaki, N., Sakuma, T., Yamamoto, M., Kitagawa, A., Muramatsu, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 02A329-3
container_issue 2
container_start_page 02A329
container_title Review of scientific instruments
container_volume 81
creator Takasugi, W.
Wakaisami, M.
Sasaki, N.
Sakuma, T.
Yamamoto, M.
Kitagawa, A.
Muramatsu, M.
description The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences has been used for cancer therapy, physics, and biology experiments since 1994. Its ion sources produce carbon ion for cancer therapy. They also produce various ions ( H + - Xe 21 + ) for physics and biology experiments. Most ion species are produced from gases by an 18 GHz electron cyclotron resonance ion source. However, some of ion species is difficult to produce from stable and secure gases. Such ion species are produced by the sputtering method. However, it is necessary to reduce material consumption rate as much as possible in the case of rare and expensive stable isotopes. We have selected "metal ions from volatile compounds method" as a means to solve this problem. We tested a variety of compounds. Since each compound has a suitable temperature to obtain the optimum vapor pressure, we have developed an accurate temperature control system. We have produced ions such as F 58 e 9 + , Co 9 + , Mg 5 + , Ti 10 + , Si 5 + , and Ge 12 + with the temperature control.
doi_str_mv 10.1063/1.3266143
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22053679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733117170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-d997c5e8a830331a5ea4ca857810bf0f27b90a59975cb0840d3d092322e011113</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOo4u_ANSEBEXHe9NmqbdCDL4GBiZjboNaZoylT7GJEX892bs6M6zuZuPcw8fIWcIM4SU3eCM0TTFhO2RCUKWxyKlbJ9MAFgSpyLJjsixc-8QwhEPyREFzCnjMCGXz4u31TxqjV_3ZfRZ-3XkTbsxVvnBmkj3nbd9c0IOKtU4c7q7U_L6cP8yf4qXq8fF_G4Z6wTRx2WeC81NpjIGjKHiRiVaZVxkCEUFFRVFDooHiusCsgRKVkIYQqkBDGFTcjH29s7X0unaG70OGzqjvaQUOEtFHqirkdrY_mMwzsu2dto0jepMPzgpwm8UKCCQ1yOpbe-cNZXc2LpV9ksiyK06iXKnLrDnu9ahaE35R_66CsDtCGx3KV_33f9tP1blaFVurUpv2Dd5WXmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733117170</pqid></control><display><type>article</type><title>MIVOC method with temperature control</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Takasugi, W. ; Wakaisami, M. ; Sasaki, N. ; Sakuma, T. ; Yamamoto, M. ; Kitagawa, A. ; Muramatsu, M.</creator><creatorcontrib>Takasugi, W. ; Wakaisami, M. ; Sasaki, N. ; Sakuma, T. ; Yamamoto, M. ; Kitagawa, A. ; Muramatsu, M.</creatorcontrib><description>The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences has been used for cancer therapy, physics, and biology experiments since 1994. Its ion sources produce carbon ion for cancer therapy. They also produce various ions ( H + - Xe 21 + ) for physics and biology experiments. Most ion species are produced from gases by an 18 GHz electron cyclotron resonance ion source. However, some of ion species is difficult to produce from stable and secure gases. Such ion species are produced by the sputtering method. However, it is necessary to reduce material consumption rate as much as possible in the case of rare and expensive stable isotopes. We have selected "metal ions from volatile compounds method" as a means to solve this problem. We tested a variety of compounds. Since each compound has a suitable temperature to obtain the optimum vapor pressure, we have developed an accurate temperature control system. We have produced ions such as F 58 e 9 + , Co 9 + , Mg 5 + , Ti 10 + , Si 5 + , and Ge 12 + with the temperature control.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.3266143</identifier><identifier>PMID: 20192350</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ACCELERATORS ; COBALT IONS ; Cold Temperature ; CYCLOTRON RESONANCE ; Cyclotrons ; ECR ION SOURCES ; Electrons ; GASES ; Gases - chemistry ; GERMANIUM IONS ; GHZ RANGE ; HEAVY IONS ; Hot Temperature ; Ions - chemistry ; IRON 58 ; MAGNESIUM IONS ; Metals - chemistry ; PARTICLE ACCELERATORS ; Radiology - instrumentation ; RADIOTHERAPY ; SILICON IONS ; SPUTTERING ; Temperature ; TEMPERATURE CONTROL ; TITANIUM IONS ; VAPOR PRESSURE ; Volatilization ; XENON IONS</subject><ispartof>Review of scientific instruments, 2010-02, Vol.81 (2), p.02A329-02A329-3</ispartof><rights>2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-d997c5e8a830331a5ea4ca857810bf0f27b90a59975cb0840d3d092322e011113</citedby><cites>FETCH-LOGICAL-c411t-d997c5e8a830331a5ea4ca857810bf0f27b90a59975cb0840d3d092322e011113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.3266143$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76353,76359</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20192350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22053679$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Takasugi, W.</creatorcontrib><creatorcontrib>Wakaisami, M.</creatorcontrib><creatorcontrib>Sasaki, N.</creatorcontrib><creatorcontrib>Sakuma, T.</creatorcontrib><creatorcontrib>Yamamoto, M.</creatorcontrib><creatorcontrib>Kitagawa, A.</creatorcontrib><creatorcontrib>Muramatsu, M.</creatorcontrib><title>MIVOC method with temperature control</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences has been used for cancer therapy, physics, and biology experiments since 1994. Its ion sources produce carbon ion for cancer therapy. They also produce various ions ( H + - Xe 21 + ) for physics and biology experiments. Most ion species are produced from gases by an 18 GHz electron cyclotron resonance ion source. However, some of ion species is difficult to produce from stable and secure gases. Such ion species are produced by the sputtering method. However, it is necessary to reduce material consumption rate as much as possible in the case of rare and expensive stable isotopes. We have selected "metal ions from volatile compounds method" as a means to solve this problem. We tested a variety of compounds. Since each compound has a suitable temperature to obtain the optimum vapor pressure, we have developed an accurate temperature control system. We have produced ions such as F 58 e 9 + , Co 9 + , Mg 5 + , Ti 10 + , Si 5 + , and Ge 12 + with the temperature control.</description><subject>ACCELERATORS</subject><subject>COBALT IONS</subject><subject>Cold Temperature</subject><subject>CYCLOTRON RESONANCE</subject><subject>Cyclotrons</subject><subject>ECR ION SOURCES</subject><subject>Electrons</subject><subject>GASES</subject><subject>Gases - chemistry</subject><subject>GERMANIUM IONS</subject><subject>GHZ RANGE</subject><subject>HEAVY IONS</subject><subject>Hot Temperature</subject><subject>Ions - chemistry</subject><subject>IRON 58</subject><subject>MAGNESIUM IONS</subject><subject>Metals - chemistry</subject><subject>PARTICLE ACCELERATORS</subject><subject>Radiology - instrumentation</subject><subject>RADIOTHERAPY</subject><subject>SILICON IONS</subject><subject>SPUTTERING</subject><subject>Temperature</subject><subject>TEMPERATURE CONTROL</subject><subject>TITANIUM IONS</subject><subject>VAPOR PRESSURE</subject><subject>Volatilization</subject><subject>XENON IONS</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLxDAUhYMoOo4u_ANSEBEXHe9NmqbdCDL4GBiZjboNaZoylT7GJEX892bs6M6zuZuPcw8fIWcIM4SU3eCM0TTFhO2RCUKWxyKlbJ9MAFgSpyLJjsixc-8QwhEPyREFzCnjMCGXz4u31TxqjV_3ZfRZ-3XkTbsxVvnBmkj3nbd9c0IOKtU4c7q7U_L6cP8yf4qXq8fF_G4Z6wTRx2WeC81NpjIGjKHiRiVaZVxkCEUFFRVFDooHiusCsgRKVkIYQqkBDGFTcjH29s7X0unaG70OGzqjvaQUOEtFHqirkdrY_mMwzsu2dto0jepMPzgpwm8UKCCQ1yOpbe-cNZXc2LpV9ksiyK06iXKnLrDnu9ahaE35R_66CsDtCGx3KV_33f9tP1blaFVurUpv2Dd5WXmg</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Takasugi, W.</creator><creator>Wakaisami, M.</creator><creator>Sasaki, N.</creator><creator>Sakuma, T.</creator><creator>Yamamoto, M.</creator><creator>Kitagawa, A.</creator><creator>Muramatsu, M.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20100201</creationdate><title>MIVOC method with temperature control</title><author>Takasugi, W. ; Wakaisami, M. ; Sasaki, N. ; Sakuma, T. ; Yamamoto, M. ; Kitagawa, A. ; Muramatsu, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-d997c5e8a830331a5ea4ca857810bf0f27b90a59975cb0840d3d092322e011113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ACCELERATORS</topic><topic>COBALT IONS</topic><topic>Cold Temperature</topic><topic>CYCLOTRON RESONANCE</topic><topic>Cyclotrons</topic><topic>ECR ION SOURCES</topic><topic>Electrons</topic><topic>GASES</topic><topic>Gases - chemistry</topic><topic>GERMANIUM IONS</topic><topic>GHZ RANGE</topic><topic>HEAVY IONS</topic><topic>Hot Temperature</topic><topic>Ions - chemistry</topic><topic>IRON 58</topic><topic>MAGNESIUM IONS</topic><topic>Metals - chemistry</topic><topic>PARTICLE ACCELERATORS</topic><topic>Radiology - instrumentation</topic><topic>RADIOTHERAPY</topic><topic>SILICON IONS</topic><topic>SPUTTERING</topic><topic>Temperature</topic><topic>TEMPERATURE CONTROL</topic><topic>TITANIUM IONS</topic><topic>VAPOR PRESSURE</topic><topic>Volatilization</topic><topic>XENON IONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takasugi, W.</creatorcontrib><creatorcontrib>Wakaisami, M.</creatorcontrib><creatorcontrib>Sasaki, N.</creatorcontrib><creatorcontrib>Sakuma, T.</creatorcontrib><creatorcontrib>Yamamoto, M.</creatorcontrib><creatorcontrib>Kitagawa, A.</creatorcontrib><creatorcontrib>Muramatsu, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takasugi, W.</au><au>Wakaisami, M.</au><au>Sasaki, N.</au><au>Sakuma, T.</au><au>Yamamoto, M.</au><au>Kitagawa, A.</au><au>Muramatsu, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIVOC method with temperature control</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>81</volume><issue>2</issue><spage>02A329</spage><epage>02A329-3</epage><pages>02A329-02A329-3</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences has been used for cancer therapy, physics, and biology experiments since 1994. Its ion sources produce carbon ion for cancer therapy. They also produce various ions ( H + - Xe 21 + ) for physics and biology experiments. Most ion species are produced from gases by an 18 GHz electron cyclotron resonance ion source. However, some of ion species is difficult to produce from stable and secure gases. Such ion species are produced by the sputtering method. However, it is necessary to reduce material consumption rate as much as possible in the case of rare and expensive stable isotopes. We have selected "metal ions from volatile compounds method" as a means to solve this problem. We tested a variety of compounds. Since each compound has a suitable temperature to obtain the optimum vapor pressure, we have developed an accurate temperature control system. We have produced ions such as F 58 e 9 + , Co 9 + , Mg 5 + , Ti 10 + , Si 5 + , and Ge 12 + with the temperature control.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>20192350</pmid><doi>10.1063/1.3266143</doi></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2010-02, Vol.81 (2), p.02A329-02A329-3
issn 0034-6748
1089-7623
language eng
recordid cdi_osti_scitechconnect_22053679
source MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects ACCELERATORS
COBALT IONS
Cold Temperature
CYCLOTRON RESONANCE
Cyclotrons
ECR ION SOURCES
Electrons
GASES
Gases - chemistry
GERMANIUM IONS
GHZ RANGE
HEAVY IONS
Hot Temperature
Ions - chemistry
IRON 58
MAGNESIUM IONS
Metals - chemistry
PARTICLE ACCELERATORS
Radiology - instrumentation
RADIOTHERAPY
SILICON IONS
SPUTTERING
Temperature
TEMPERATURE CONTROL
TITANIUM IONS
VAPOR PRESSURE
Volatilization
XENON IONS
title MIVOC method with temperature control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIVOC%20method%20with%20temperature%20control&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Takasugi,%20W.&rft.date=2010-02-01&rft.volume=81&rft.issue=2&rft.spage=02A329&rft.epage=02A329-3&rft.pages=02A329-02A329-3&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.3266143&rft_dat=%3Cproquest_osti_%3E733117170%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733117170&rft_id=info:pmid/20192350&rfr_iscdi=true