Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effect

Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed excl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-07, Vol.102 (2)
Hauptverfasser: Madhavacheril, Mathew S., Hill, J. Colin, Næss, Sigurd, Addison, Graeme E., Aiola, Simone, Baildon, Taylor, Battaglia, Nicholas, Bean, Rachel, Bond, J. Richard, Calabrese, Erminia, Calafut, Victoria, Choi, Steve K., Darwish, Omar, Datta, Rahul, Devlin, Mark J., Dunkley, Joanna, Dünner, Rolando, Ferraro, Simone, Gallardo, Patricio A., Gluscevic, Vera, Halpern, Mark, Han, Dongwon, Hasselfield, Matthew, Hilton, Matt, Hincks, Adam D., Hložek, Renée, Ho, Shuay-Pwu Patty, Huffenberger, Kevin M., Hughes, John P., Koopman, Brian J., Kosowsky, Arthur, Lokken, Martine, Louis, Thibaut, Lungu, Marius, MacInnis, Amanda, Maurin, Loïc, McMahon, Jeffrey J., Moodley, Kavilan, Nati, Federico, Niemack, Michael D., Page, Lyman A., Partridge, Bruce, Robertson, Naomi, Sehgal, Neelima, Schaan, Emmanuel, Schillaci, Alessandro, Sherwin, Blake D., Sifón, Cristóbal, Simon, Sara M., Spergel, David N., Staggs, Suzanne T., Storer, Emilie R., van Engelen, Alexander, Vavagiakis, Eve M., Wollack, Edward J., Xu, Zhilei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physical review. D
container_volume 102
creator Madhavacheril, Mathew S.
Hill, J. Colin
Næss, Sigurd
Addison, Graeme E.
Aiola, Simone
Baildon, Taylor
Battaglia, Nicholas
Bean, Rachel
Bond, J. Richard
Calabrese, Erminia
Calafut, Victoria
Choi, Steve K.
Darwish, Omar
Datta, Rahul
Devlin, Mark J.
Dunkley, Joanna
Dünner, Rolando
Ferraro, Simone
Gallardo, Patricio A.
Gluscevic, Vera
Halpern, Mark
Han, Dongwon
Hasselfield, Matthew
Hilton, Matt
Hincks, Adam D.
Hložek, Renée
Ho, Shuay-Pwu Patty
Huffenberger, Kevin M.
Hughes, John P.
Koopman, Brian J.
Kosowsky, Arthur
Lokken, Martine
Louis, Thibaut
Lungu, Marius
MacInnis, Amanda
Maurin, Loïc
McMahon, Jeffrey J.
Moodley, Kavilan
Nati, Federico
Niemack, Michael D.
Page, Lyman A.
Partridge, Bruce
Robertson, Naomi
Sehgal, Neelima
Schaan, Emmanuel
Schillaci, Alessandro
Sherwin, Blake D.
Sifón, Cristóbal
Simon, Sara M.
Spergel, David N.
Staggs, Suzanne T.
Storer, Emilie R.
van Engelen, Alexander
Vavagiakis, Eve M.
Wollack, Edward J.
Xu, Zhilei
description Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the internal linear combination (ILC) approach which we have designed to optimally account for the anisotropic noise (in the 2D Fourier domain) often found in ground-based CMB experiments. Using this method, we combine multi-frequency data from the Planck satellite and the Atacama Cosmology Telescope Polarimeter (ACTPol) to construct the first wide-area, arcminute-resolution component-separated maps (≈ 2100 sq. deg.) of the CMB temperature anisotropy and the thermal Sunyaev-Zel'dovich (tSZ) effect sourced by the inverse-Compton scattering of CMB photons off hot, ionized gas. Our ILC pipeline allows for explicit deprojection of various contaminating signals, including a modified blackbody approximation of the cosmic infrared background (CIB) spectral energy distribution. The cleaned CMB maps will be a useful resource for CMB lensing reconstruction, kinematic SZ cross-correlations, and primordial non-Gaussianity studies. Here, the tSZ maps will be used to study the pressure profiles of galaxies, groups, and clusters through cross-correlations with halo catalogs, with dust contamination controlled via CIB deprojection. The data products described in this paper are available on LAMBDA.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2205346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2205346</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_22053463</originalsourceid><addsrcrecordid>eNqNik1qAkEQRpuQQCR6hyL7gZ7xD7NLhogbV7pyI0VPTWZCd1czVQruco1cz5M4grh28fE9Hu_JDIrJ3GbWFovnO-f21YxEfm2PM7uY5_nA6Keiw4BQsgT2_HOCLXkSx4k-ehkSR4qaCSXsUKmCgEmAayjXX6AUEvX60BFgrEAbuq4L6GFziCekY7Yjf_77r_jYugaorsnp0LzU6IVGt38z78vvbbnKWLTdi2uVXOM4xr7dF4Wdjiez8UPRBZkuTuU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effect</title><source>American Physical Society Journals</source><creator>Madhavacheril, Mathew S. ; Hill, J. Colin ; Næss, Sigurd ; Addison, Graeme E. ; Aiola, Simone ; Baildon, Taylor ; Battaglia, Nicholas ; Bean, Rachel ; Bond, J. Richard ; Calabrese, Erminia ; Calafut, Victoria ; Choi, Steve K. ; Darwish, Omar ; Datta, Rahul ; Devlin, Mark J. ; Dunkley, Joanna ; Dünner, Rolando ; Ferraro, Simone ; Gallardo, Patricio A. ; Gluscevic, Vera ; Halpern, Mark ; Han, Dongwon ; Hasselfield, Matthew ; Hilton, Matt ; Hincks, Adam D. ; Hložek, Renée ; Ho, Shuay-Pwu Patty ; Huffenberger, Kevin M. ; Hughes, John P. ; Koopman, Brian J. ; Kosowsky, Arthur ; Lokken, Martine ; Louis, Thibaut ; Lungu, Marius ; MacInnis, Amanda ; Maurin, Loïc ; McMahon, Jeffrey J. ; Moodley, Kavilan ; Nati, Federico ; Niemack, Michael D. ; Page, Lyman A. ; Partridge, Bruce ; Robertson, Naomi ; Sehgal, Neelima ; Schaan, Emmanuel ; Schillaci, Alessandro ; Sherwin, Blake D. ; Sifón, Cristóbal ; Simon, Sara M. ; Spergel, David N. ; Staggs, Suzanne T. ; Storer, Emilie R. ; van Engelen, Alexander ; Vavagiakis, Eve M. ; Wollack, Edward J. ; Xu, Zhilei</creator><creatorcontrib>Madhavacheril, Mathew S. ; Hill, J. Colin ; Næss, Sigurd ; Addison, Graeme E. ; Aiola, Simone ; Baildon, Taylor ; Battaglia, Nicholas ; Bean, Rachel ; Bond, J. Richard ; Calabrese, Erminia ; Calafut, Victoria ; Choi, Steve K. ; Darwish, Omar ; Datta, Rahul ; Devlin, Mark J. ; Dunkley, Joanna ; Dünner, Rolando ; Ferraro, Simone ; Gallardo, Patricio A. ; Gluscevic, Vera ; Halpern, Mark ; Han, Dongwon ; Hasselfield, Matthew ; Hilton, Matt ; Hincks, Adam D. ; Hložek, Renée ; Ho, Shuay-Pwu Patty ; Huffenberger, Kevin M. ; Hughes, John P. ; Koopman, Brian J. ; Kosowsky, Arthur ; Lokken, Martine ; Louis, Thibaut ; Lungu, Marius ; MacInnis, Amanda ; Maurin, Loïc ; McMahon, Jeffrey J. ; Moodley, Kavilan ; Nati, Federico ; Niemack, Michael D. ; Page, Lyman A. ; Partridge, Bruce ; Robertson, Naomi ; Sehgal, Neelima ; Schaan, Emmanuel ; Schillaci, Alessandro ; Sherwin, Blake D. ; Sifón, Cristóbal ; Simon, Sara M. ; Spergel, David N. ; Staggs, Suzanne T. ; Storer, Emilie R. ; van Engelen, Alexander ; Vavagiakis, Eve M. ; Wollack, Edward J. ; Xu, Zhilei ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Stony Brook Univ., NY (United States)</creatorcontrib><description>Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the internal linear combination (ILC) approach which we have designed to optimally account for the anisotropic noise (in the 2D Fourier domain) often found in ground-based CMB experiments. Using this method, we combine multi-frequency data from the Planck satellite and the Atacama Cosmology Telescope Polarimeter (ACTPol) to construct the first wide-area, arcminute-resolution component-separated maps (≈ 2100 sq. deg.) of the CMB temperature anisotropy and the thermal Sunyaev-Zel'dovich (tSZ) effect sourced by the inverse-Compton scattering of CMB photons off hot, ionized gas. Our ILC pipeline allows for explicit deprojection of various contaminating signals, including a modified blackbody approximation of the cosmic infrared background (CIB) spectral energy distribution. The cleaned CMB maps will be a useful resource for CMB lensing reconstruction, kinematic SZ cross-correlations, and primordial non-Gaussianity studies. Here, the tSZ maps will be used to study the pressure profiles of galaxies, groups, and clusters through cross-correlations with halo catalogs, with dust contamination controlled via CIB deprojection. The data products described in this paper are available on LAMBDA.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Cosmic microwave background ; Cosmology</subject><ispartof>Physical review. D, 2020-07, Vol.102 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000167405350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2205346$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Madhavacheril, Mathew S.</creatorcontrib><creatorcontrib>Hill, J. Colin</creatorcontrib><creatorcontrib>Næss, Sigurd</creatorcontrib><creatorcontrib>Addison, Graeme E.</creatorcontrib><creatorcontrib>Aiola, Simone</creatorcontrib><creatorcontrib>Baildon, Taylor</creatorcontrib><creatorcontrib>Battaglia, Nicholas</creatorcontrib><creatorcontrib>Bean, Rachel</creatorcontrib><creatorcontrib>Bond, J. Richard</creatorcontrib><creatorcontrib>Calabrese, Erminia</creatorcontrib><creatorcontrib>Calafut, Victoria</creatorcontrib><creatorcontrib>Choi, Steve K.</creatorcontrib><creatorcontrib>Darwish, Omar</creatorcontrib><creatorcontrib>Datta, Rahul</creatorcontrib><creatorcontrib>Devlin, Mark J.</creatorcontrib><creatorcontrib>Dunkley, Joanna</creatorcontrib><creatorcontrib>Dünner, Rolando</creatorcontrib><creatorcontrib>Ferraro, Simone</creatorcontrib><creatorcontrib>Gallardo, Patricio A.</creatorcontrib><creatorcontrib>Gluscevic, Vera</creatorcontrib><creatorcontrib>Halpern, Mark</creatorcontrib><creatorcontrib>Han, Dongwon</creatorcontrib><creatorcontrib>Hasselfield, Matthew</creatorcontrib><creatorcontrib>Hilton, Matt</creatorcontrib><creatorcontrib>Hincks, Adam D.</creatorcontrib><creatorcontrib>Hložek, Renée</creatorcontrib><creatorcontrib>Ho, Shuay-Pwu Patty</creatorcontrib><creatorcontrib>Huffenberger, Kevin M.</creatorcontrib><creatorcontrib>Hughes, John P.</creatorcontrib><creatorcontrib>Koopman, Brian J.</creatorcontrib><creatorcontrib>Kosowsky, Arthur</creatorcontrib><creatorcontrib>Lokken, Martine</creatorcontrib><creatorcontrib>Louis, Thibaut</creatorcontrib><creatorcontrib>Lungu, Marius</creatorcontrib><creatorcontrib>MacInnis, Amanda</creatorcontrib><creatorcontrib>Maurin, Loïc</creatorcontrib><creatorcontrib>McMahon, Jeffrey J.</creatorcontrib><creatorcontrib>Moodley, Kavilan</creatorcontrib><creatorcontrib>Nati, Federico</creatorcontrib><creatorcontrib>Niemack, Michael D.</creatorcontrib><creatorcontrib>Page, Lyman A.</creatorcontrib><creatorcontrib>Partridge, Bruce</creatorcontrib><creatorcontrib>Robertson, Naomi</creatorcontrib><creatorcontrib>Sehgal, Neelima</creatorcontrib><creatorcontrib>Schaan, Emmanuel</creatorcontrib><creatorcontrib>Schillaci, Alessandro</creatorcontrib><creatorcontrib>Sherwin, Blake D.</creatorcontrib><creatorcontrib>Sifón, Cristóbal</creatorcontrib><creatorcontrib>Simon, Sara M.</creatorcontrib><creatorcontrib>Spergel, David N.</creatorcontrib><creatorcontrib>Staggs, Suzanne T.</creatorcontrib><creatorcontrib>Storer, Emilie R.</creatorcontrib><creatorcontrib>van Engelen, Alexander</creatorcontrib><creatorcontrib>Vavagiakis, Eve M.</creatorcontrib><creatorcontrib>Wollack, Edward J.</creatorcontrib><creatorcontrib>Xu, Zhilei</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Stony Brook Univ., NY (United States)</creatorcontrib><title>Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effect</title><title>Physical review. D</title><description>Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the internal linear combination (ILC) approach which we have designed to optimally account for the anisotropic noise (in the 2D Fourier domain) often found in ground-based CMB experiments. Using this method, we combine multi-frequency data from the Planck satellite and the Atacama Cosmology Telescope Polarimeter (ACTPol) to construct the first wide-area, arcminute-resolution component-separated maps (≈ 2100 sq. deg.) of the CMB temperature anisotropy and the thermal Sunyaev-Zel'dovich (tSZ) effect sourced by the inverse-Compton scattering of CMB photons off hot, ionized gas. Our ILC pipeline allows for explicit deprojection of various contaminating signals, including a modified blackbody approximation of the cosmic infrared background (CIB) spectral energy distribution. The cleaned CMB maps will be a useful resource for CMB lensing reconstruction, kinematic SZ cross-correlations, and primordial non-Gaussianity studies. Here, the tSZ maps will be used to study the pressure profiles of galaxies, groups, and clusters through cross-correlations with halo catalogs, with dust contamination controlled via CIB deprojection. The data products described in this paper are available on LAMBDA.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Cosmic microwave background</subject><subject>Cosmology</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNik1qAkEQRpuQQCR6hyL7gZ7xD7NLhogbV7pyI0VPTWZCd1czVQruco1cz5M4grh28fE9Hu_JDIrJ3GbWFovnO-f21YxEfm2PM7uY5_nA6Keiw4BQsgT2_HOCLXkSx4k-ehkSR4qaCSXsUKmCgEmAayjXX6AUEvX60BFgrEAbuq4L6GFziCekY7Yjf_77r_jYugaorsnp0LzU6IVGt38z78vvbbnKWLTdi2uVXOM4xr7dF4Wdjiez8UPRBZkuTuU</recordid><startdate>20200722</startdate><enddate>20200722</enddate><creator>Madhavacheril, Mathew S.</creator><creator>Hill, J. Colin</creator><creator>Næss, Sigurd</creator><creator>Addison, Graeme E.</creator><creator>Aiola, Simone</creator><creator>Baildon, Taylor</creator><creator>Battaglia, Nicholas</creator><creator>Bean, Rachel</creator><creator>Bond, J. Richard</creator><creator>Calabrese, Erminia</creator><creator>Calafut, Victoria</creator><creator>Choi, Steve K.</creator><creator>Darwish, Omar</creator><creator>Datta, Rahul</creator><creator>Devlin, Mark J.</creator><creator>Dunkley, Joanna</creator><creator>Dünner, Rolando</creator><creator>Ferraro, Simone</creator><creator>Gallardo, Patricio A.</creator><creator>Gluscevic, Vera</creator><creator>Halpern, Mark</creator><creator>Han, Dongwon</creator><creator>Hasselfield, Matthew</creator><creator>Hilton, Matt</creator><creator>Hincks, Adam D.</creator><creator>Hložek, Renée</creator><creator>Ho, Shuay-Pwu Patty</creator><creator>Huffenberger, Kevin M.</creator><creator>Hughes, John P.</creator><creator>Koopman, Brian J.</creator><creator>Kosowsky, Arthur</creator><creator>Lokken, Martine</creator><creator>Louis, Thibaut</creator><creator>Lungu, Marius</creator><creator>MacInnis, Amanda</creator><creator>Maurin, Loïc</creator><creator>McMahon, Jeffrey J.</creator><creator>Moodley, Kavilan</creator><creator>Nati, Federico</creator><creator>Niemack, Michael D.</creator><creator>Page, Lyman A.</creator><creator>Partridge, Bruce</creator><creator>Robertson, Naomi</creator><creator>Sehgal, Neelima</creator><creator>Schaan, Emmanuel</creator><creator>Schillaci, Alessandro</creator><creator>Sherwin, Blake D.</creator><creator>Sifón, Cristóbal</creator><creator>Simon, Sara M.</creator><creator>Spergel, David N.</creator><creator>Staggs, Suzanne T.</creator><creator>Storer, Emilie R.</creator><creator>van Engelen, Alexander</creator><creator>Vavagiakis, Eve M.</creator><creator>Wollack, Edward J.</creator><creator>Xu, Zhilei</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000167405350</orcidid></search><sort><creationdate>20200722</creationdate><title>Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effect</title><author>Madhavacheril, Mathew S. ; Hill, J. Colin ; Næss, Sigurd ; Addison, Graeme E. ; Aiola, Simone ; Baildon, Taylor ; Battaglia, Nicholas ; Bean, Rachel ; Bond, J. Richard ; Calabrese, Erminia ; Calafut, Victoria ; Choi, Steve K. ; Darwish, Omar ; Datta, Rahul ; Devlin, Mark J. ; Dunkley, Joanna ; Dünner, Rolando ; Ferraro, Simone ; Gallardo, Patricio A. ; Gluscevic, Vera ; Halpern, Mark ; Han, Dongwon ; Hasselfield, Matthew ; Hilton, Matt ; Hincks, Adam D. ; Hložek, Renée ; Ho, Shuay-Pwu Patty ; Huffenberger, Kevin M. ; Hughes, John P. ; Koopman, Brian J. ; Kosowsky, Arthur ; Lokken, Martine ; Louis, Thibaut ; Lungu, Marius ; MacInnis, Amanda ; Maurin, Loïc ; McMahon, Jeffrey J. ; Moodley, Kavilan ; Nati, Federico ; Niemack, Michael D. ; Page, Lyman A. ; Partridge, Bruce ; Robertson, Naomi ; Sehgal, Neelima ; Schaan, Emmanuel ; Schillaci, Alessandro ; Sherwin, Blake D. ; Sifón, Cristóbal ; Simon, Sara M. ; Spergel, David N. ; Staggs, Suzanne T. ; Storer, Emilie R. ; van Engelen, Alexander ; Vavagiakis, Eve M. ; Wollack, Edward J. ; Xu, Zhilei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_22053463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Cosmic microwave background</topic><topic>Cosmology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madhavacheril, Mathew S.</creatorcontrib><creatorcontrib>Hill, J. Colin</creatorcontrib><creatorcontrib>Næss, Sigurd</creatorcontrib><creatorcontrib>Addison, Graeme E.</creatorcontrib><creatorcontrib>Aiola, Simone</creatorcontrib><creatorcontrib>Baildon, Taylor</creatorcontrib><creatorcontrib>Battaglia, Nicholas</creatorcontrib><creatorcontrib>Bean, Rachel</creatorcontrib><creatorcontrib>Bond, J. Richard</creatorcontrib><creatorcontrib>Calabrese, Erminia</creatorcontrib><creatorcontrib>Calafut, Victoria</creatorcontrib><creatorcontrib>Choi, Steve K.</creatorcontrib><creatorcontrib>Darwish, Omar</creatorcontrib><creatorcontrib>Datta, Rahul</creatorcontrib><creatorcontrib>Devlin, Mark J.</creatorcontrib><creatorcontrib>Dunkley, Joanna</creatorcontrib><creatorcontrib>Dünner, Rolando</creatorcontrib><creatorcontrib>Ferraro, Simone</creatorcontrib><creatorcontrib>Gallardo, Patricio A.</creatorcontrib><creatorcontrib>Gluscevic, Vera</creatorcontrib><creatorcontrib>Halpern, Mark</creatorcontrib><creatorcontrib>Han, Dongwon</creatorcontrib><creatorcontrib>Hasselfield, Matthew</creatorcontrib><creatorcontrib>Hilton, Matt</creatorcontrib><creatorcontrib>Hincks, Adam D.</creatorcontrib><creatorcontrib>Hložek, Renée</creatorcontrib><creatorcontrib>Ho, Shuay-Pwu Patty</creatorcontrib><creatorcontrib>Huffenberger, Kevin M.</creatorcontrib><creatorcontrib>Hughes, John P.</creatorcontrib><creatorcontrib>Koopman, Brian J.</creatorcontrib><creatorcontrib>Kosowsky, Arthur</creatorcontrib><creatorcontrib>Lokken, Martine</creatorcontrib><creatorcontrib>Louis, Thibaut</creatorcontrib><creatorcontrib>Lungu, Marius</creatorcontrib><creatorcontrib>MacInnis, Amanda</creatorcontrib><creatorcontrib>Maurin, Loïc</creatorcontrib><creatorcontrib>McMahon, Jeffrey J.</creatorcontrib><creatorcontrib>Moodley, Kavilan</creatorcontrib><creatorcontrib>Nati, Federico</creatorcontrib><creatorcontrib>Niemack, Michael D.</creatorcontrib><creatorcontrib>Page, Lyman A.</creatorcontrib><creatorcontrib>Partridge, Bruce</creatorcontrib><creatorcontrib>Robertson, Naomi</creatorcontrib><creatorcontrib>Sehgal, Neelima</creatorcontrib><creatorcontrib>Schaan, Emmanuel</creatorcontrib><creatorcontrib>Schillaci, Alessandro</creatorcontrib><creatorcontrib>Sherwin, Blake D.</creatorcontrib><creatorcontrib>Sifón, Cristóbal</creatorcontrib><creatorcontrib>Simon, Sara M.</creatorcontrib><creatorcontrib>Spergel, David N.</creatorcontrib><creatorcontrib>Staggs, Suzanne T.</creatorcontrib><creatorcontrib>Storer, Emilie R.</creatorcontrib><creatorcontrib>van Engelen, Alexander</creatorcontrib><creatorcontrib>Vavagiakis, Eve M.</creatorcontrib><creatorcontrib>Wollack, Edward J.</creatorcontrib><creatorcontrib>Xu, Zhilei</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Stony Brook Univ., NY (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madhavacheril, Mathew S.</au><au>Hill, J. Colin</au><au>Næss, Sigurd</au><au>Addison, Graeme E.</au><au>Aiola, Simone</au><au>Baildon, Taylor</au><au>Battaglia, Nicholas</au><au>Bean, Rachel</au><au>Bond, J. Richard</au><au>Calabrese, Erminia</au><au>Calafut, Victoria</au><au>Choi, Steve K.</au><au>Darwish, Omar</au><au>Datta, Rahul</au><au>Devlin, Mark J.</au><au>Dunkley, Joanna</au><au>Dünner, Rolando</au><au>Ferraro, Simone</au><au>Gallardo, Patricio A.</au><au>Gluscevic, Vera</au><au>Halpern, Mark</au><au>Han, Dongwon</au><au>Hasselfield, Matthew</au><au>Hilton, Matt</au><au>Hincks, Adam D.</au><au>Hložek, Renée</au><au>Ho, Shuay-Pwu Patty</au><au>Huffenberger, Kevin M.</au><au>Hughes, John P.</au><au>Koopman, Brian J.</au><au>Kosowsky, Arthur</au><au>Lokken, Martine</au><au>Louis, Thibaut</au><au>Lungu, Marius</au><au>MacInnis, Amanda</au><au>Maurin, Loïc</au><au>McMahon, Jeffrey J.</au><au>Moodley, Kavilan</au><au>Nati, Federico</au><au>Niemack, Michael D.</au><au>Page, Lyman A.</au><au>Partridge, Bruce</au><au>Robertson, Naomi</au><au>Sehgal, Neelima</au><au>Schaan, Emmanuel</au><au>Schillaci, Alessandro</au><au>Sherwin, Blake D.</au><au>Sifón, Cristóbal</au><au>Simon, Sara M.</au><au>Spergel, David N.</au><au>Staggs, Suzanne T.</au><au>Storer, Emilie R.</au><au>van Engelen, Alexander</au><au>Vavagiakis, Eve M.</au><au>Wollack, Edward J.</au><au>Xu, Zhilei</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Stony Brook Univ., NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effect</atitle><jtitle>Physical review. D</jtitle><date>2020-07-22</date><risdate>2020</risdate><volume>102</volume><issue>2</issue><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the internal linear combination (ILC) approach which we have designed to optimally account for the anisotropic noise (in the 2D Fourier domain) often found in ground-based CMB experiments. Using this method, we combine multi-frequency data from the Planck satellite and the Atacama Cosmology Telescope Polarimeter (ACTPol) to construct the first wide-area, arcminute-resolution component-separated maps (≈ 2100 sq. deg.) of the CMB temperature anisotropy and the thermal Sunyaev-Zel'dovich (tSZ) effect sourced by the inverse-Compton scattering of CMB photons off hot, ionized gas. Our ILC pipeline allows for explicit deprojection of various contaminating signals, including a modified blackbody approximation of the cosmic infrared background (CIB) spectral energy distribution. The cleaned CMB maps will be a useful resource for CMB lensing reconstruction, kinematic SZ cross-correlations, and primordial non-Gaussianity studies. Here, the tSZ maps will be used to study the pressure profiles of galaxies, groups, and clusters through cross-correlations with halo catalogs, with dust contamination controlled via CIB deprojection. The data products described in this paper are available on LAMBDA.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><orcidid>https://orcid.org/0000000167405350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-07, Vol.102 (2)
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_2205346
source American Physical Society Journals
subjects ASTRONOMY AND ASTROPHYSICS
Cosmic microwave background
Cosmology
title Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atacama%20Cosmology%20Telescope:%20Component-separated%20maps%20of%20CMB%20temperature%20and%20the%20thermal%20Sunyaev-Zel%E2%80%99dovich%20effect&rft.jtitle=Physical%20review.%20D&rft.au=Madhavacheril,%20Mathew%20S.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-07-22&rft.volume=102&rft.issue=2&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/&rft_dat=%3Costi%3E2205346%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true