Atacama Cosmology Telescope: Constraints on prerecombination early dark energy
The early dark energy (EDE) scenario aims to increase the value of the Hubble constant (H0) inferred from cosmic microwave background (CMB) data over that found in the standard cosmological model (Λ CDM ), via the introduction of a new form of energy density in the early Universe. The EDE component...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2022-06, Vol.105 (12) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Physical review. D |
container_volume | 105 |
creator | Hill, J. Colin Calabrese, Erminia Aiola, Simone Battaglia, Nicholas Bolliet, Boris Choi, Steve K. Devlin, Mark J. Duivenvoorden, Adriaan J. Dunkley, Jo Ferraro, Simone Gallardo, Patricio A. Gluscevic, Vera Hasselfield, Matthew Hilton, Matt Hincks, Adam D. Hložek, Renée Koopman, Brian J. Kosowsky, Arthur La Posta, Adrien Louis, Thibaut Madhavacheril, Mathew S. McMahon, Jeff Moodley, Kavilan Naess, Sigurd Natale, Umberto Nati, Federico Newburgh, Laura Niemack, Michael D. Page, Lyman A. Partridge, Bruce Qu, Frank J. Salatino, Maria Schillaci, Alessandro Sehgal, Neelima Sherwin, Blake D. Sifón, Cristóbal Spergel, David N. Staggs, Suzanne T. Storer, Emilie R. van Engelen, Alexander Vavagiakis, Eve M. Wollack, Edward J. Xu, Zhilei |
description | The early dark energy (EDE) scenario aims to increase the value of the Hubble constant (H0) inferred from cosmic microwave background (CMB) data over that found in the standard cosmological model (Λ CDM ), via the introduction of a new form of energy density in the early Universe. The EDE component briefly accelerates cosmic expansion just prior to recombination, which reduces the physical size of the sound horizon imprinted in the CMB. Previous work has found that nonzero EDE is not preferred by Planck CMB power spectrum data alone, which yield a 95% confidence level (C.L.) upper limit fEDE < 0.087 on the maximal fractional contribution of the EDE field to the cosmic energy budget. In this paper, we fit the EDE model to CMB data from the Atacama Cosmology Telescope (ACT) data release 4. We find that a combination of ACT, large-scale Planck TT (similar to WMAP), Planck CMB lensing, and BAO data prefers the existence of EDE at >99.7 % C .L . : fEDE = 0.091$^{+0.020}_{-0.036}$, with H0 = 70.9$^{+1.0}_{-2.0}$ km/s/Mpc (both 68% C.L.). From a model-selection standpoint, we find that EDE is favored over Λ CDM by these data at roughly 3 σ significance. In contrast, a joint analysis of the full Planck and ACT data yields no evidence for EDE, as previously found for Planck alone. We show that the preference for EDE in ACT alone is driven by its TE and EE power spectrum data. The tight constraint on EDE from Planck alone is driven by its high-ℓ TT power spectrum data. Understanding whether these differing constraints are physical in nature, due to systematics, or simply a rare statistical fluctuation is of high priority. Here, the best-fit EDE models to ACT and Planck exhibit coherent differences across a wide range of multipoles in TE and EE, indicating that a powerful test of this scenario is anticipated with near-future data from ACT and other ground-based experiments. |
doi_str_mv | 10.1103/PhysRevD.105.123536 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2205301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2205301</sourcerecordid><originalsourceid>FETCH-LOGICAL-o112t-a0894783893b5cd130ae026d239136897634f3167663174daaf870931d3c39193</originalsourceid><addsrcrecordid>eNotjM1Kw0AURmehYKl9AjfBfeq9c5OZjLsSfyoUFanrMp3cttFkpmQGIW9vQFfn4_BxhLhBWCIC3b2fxvjBPw9LhHKJkkpSF2ImCw05AMKVWMT4BdNUYDTiTLyuknW2t1kdYh-6cByzLXccXTjz_SR9TINtfYpZ8Nl54IFd6Pett6mdBNuhG7PGDt8Zex6O47W4PNgu8uKfc_H59Lit1_nm7fmlXm3ygChTbqEyha6oMrQvXYMElkGqRpJBUpXRiooDodJKEeqisfZQaTCEDbnpYmgubv-6IaZ2F12b2J1c8J5d2kkJJQHSL-2aT4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atacama Cosmology Telescope: Constraints on prerecombination early dark energy</title><source>American Physical Society Journals</source><creator>Hill, J. Colin ; Calabrese, Erminia ; Aiola, Simone ; Battaglia, Nicholas ; Bolliet, Boris ; Choi, Steve K. ; Devlin, Mark J. ; Duivenvoorden, Adriaan J. ; Dunkley, Jo ; Ferraro, Simone ; Gallardo, Patricio A. ; Gluscevic, Vera ; Hasselfield, Matthew ; Hilton, Matt ; Hincks, Adam D. ; Hložek, Renée ; Koopman, Brian J. ; Kosowsky, Arthur ; La Posta, Adrien ; Louis, Thibaut ; Madhavacheril, Mathew S. ; McMahon, Jeff ; Moodley, Kavilan ; Naess, Sigurd ; Natale, Umberto ; Nati, Federico ; Newburgh, Laura ; Niemack, Michael D. ; Page, Lyman A. ; Partridge, Bruce ; Qu, Frank J. ; Salatino, Maria ; Schillaci, Alessandro ; Sehgal, Neelima ; Sherwin, Blake D. ; Sifón, Cristóbal ; Spergel, David N. ; Staggs, Suzanne T. ; Storer, Emilie R. ; van Engelen, Alexander ; Vavagiakis, Eve M. ; Wollack, Edward J. ; Xu, Zhilei</creator><creatorcontrib>Hill, J. Colin ; Calabrese, Erminia ; Aiola, Simone ; Battaglia, Nicholas ; Bolliet, Boris ; Choi, Steve K. ; Devlin, Mark J. ; Duivenvoorden, Adriaan J. ; Dunkley, Jo ; Ferraro, Simone ; Gallardo, Patricio A. ; Gluscevic, Vera ; Hasselfield, Matthew ; Hilton, Matt ; Hincks, Adam D. ; Hložek, Renée ; Koopman, Brian J. ; Kosowsky, Arthur ; La Posta, Adrien ; Louis, Thibaut ; Madhavacheril, Mathew S. ; McMahon, Jeff ; Moodley, Kavilan ; Naess, Sigurd ; Natale, Umberto ; Nati, Federico ; Newburgh, Laura ; Niemack, Michael D. ; Page, Lyman A. ; Partridge, Bruce ; Qu, Frank J. ; Salatino, Maria ; Schillaci, Alessandro ; Sehgal, Neelima ; Sherwin, Blake D. ; Sifón, Cristóbal ; Spergel, David N. ; Staggs, Suzanne T. ; Storer, Emilie R. ; van Engelen, Alexander ; Vavagiakis, Eve M. ; Wollack, Edward J. ; Xu, Zhilei ; Stony Brook Univ., NY (United States)</creatorcontrib><description>The early dark energy (EDE) scenario aims to increase the value of the Hubble constant (H0) inferred from cosmic microwave background (CMB) data over that found in the standard cosmological model (Λ CDM ), via the introduction of a new form of energy density in the early Universe. The EDE component briefly accelerates cosmic expansion just prior to recombination, which reduces the physical size of the sound horizon imprinted in the CMB. Previous work has found that nonzero EDE is not preferred by Planck CMB power spectrum data alone, which yield a 95% confidence level (C.L.) upper limit fEDE < 0.087 on the maximal fractional contribution of the EDE field to the cosmic energy budget. In this paper, we fit the EDE model to CMB data from the Atacama Cosmology Telescope (ACT) data release 4. We find that a combination of ACT, large-scale Planck TT (similar to WMAP), Planck CMB lensing, and BAO data prefers the existence of EDE at >99.7 % C .L . : fEDE = 0.091$^{+0.020}_{-0.036}$, with H0 = 70.9$^{+1.0}_{-2.0}$ km/s/Mpc (both 68% C.L.). From a model-selection standpoint, we find that EDE is favored over Λ CDM by these data at roughly 3 σ significance. In contrast, a joint analysis of the full Planck and ACT data yields no evidence for EDE, as previously found for Planck alone. We show that the preference for EDE in ACT alone is driven by its TE and EE power spectrum data. The tight constraint on EDE from Planck alone is driven by its high-ℓ TT power spectrum data. Understanding whether these differing constraints are physical in nature, due to systematics, or simply a rare statistical fluctuation is of high priority. Here, the best-fit EDE models to ACT and Planck exhibit coherent differences across a wide range of multipoles in TE and EE, indicating that a powerful test of this scenario is anticipated with near-future data from ACT and other ground-based experiments.</description><identifier>ISSN: 2470-0010</identifier><identifier>DOI: 10.1103/PhysRevD.105.123536</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Cosmic microwave background ; Cosmological parameters ; Dark energy ; Evolution of the Universe</subject><ispartof>Physical review. D, 2022-06, Vol.105 (12)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000295390835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2205301$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hill, J. Colin</creatorcontrib><creatorcontrib>Calabrese, Erminia</creatorcontrib><creatorcontrib>Aiola, Simone</creatorcontrib><creatorcontrib>Battaglia, Nicholas</creatorcontrib><creatorcontrib>Bolliet, Boris</creatorcontrib><creatorcontrib>Choi, Steve K.</creatorcontrib><creatorcontrib>Devlin, Mark J.</creatorcontrib><creatorcontrib>Duivenvoorden, Adriaan J.</creatorcontrib><creatorcontrib>Dunkley, Jo</creatorcontrib><creatorcontrib>Ferraro, Simone</creatorcontrib><creatorcontrib>Gallardo, Patricio A.</creatorcontrib><creatorcontrib>Gluscevic, Vera</creatorcontrib><creatorcontrib>Hasselfield, Matthew</creatorcontrib><creatorcontrib>Hilton, Matt</creatorcontrib><creatorcontrib>Hincks, Adam D.</creatorcontrib><creatorcontrib>Hložek, Renée</creatorcontrib><creatorcontrib>Koopman, Brian J.</creatorcontrib><creatorcontrib>Kosowsky, Arthur</creatorcontrib><creatorcontrib>La Posta, Adrien</creatorcontrib><creatorcontrib>Louis, Thibaut</creatorcontrib><creatorcontrib>Madhavacheril, Mathew S.</creatorcontrib><creatorcontrib>McMahon, Jeff</creatorcontrib><creatorcontrib>Moodley, Kavilan</creatorcontrib><creatorcontrib>Naess, Sigurd</creatorcontrib><creatorcontrib>Natale, Umberto</creatorcontrib><creatorcontrib>Nati, Federico</creatorcontrib><creatorcontrib>Newburgh, Laura</creatorcontrib><creatorcontrib>Niemack, Michael D.</creatorcontrib><creatorcontrib>Page, Lyman A.</creatorcontrib><creatorcontrib>Partridge, Bruce</creatorcontrib><creatorcontrib>Qu, Frank J.</creatorcontrib><creatorcontrib>Salatino, Maria</creatorcontrib><creatorcontrib>Schillaci, Alessandro</creatorcontrib><creatorcontrib>Sehgal, Neelima</creatorcontrib><creatorcontrib>Sherwin, Blake D.</creatorcontrib><creatorcontrib>Sifón, Cristóbal</creatorcontrib><creatorcontrib>Spergel, David N.</creatorcontrib><creatorcontrib>Staggs, Suzanne T.</creatorcontrib><creatorcontrib>Storer, Emilie R.</creatorcontrib><creatorcontrib>van Engelen, Alexander</creatorcontrib><creatorcontrib>Vavagiakis, Eve M.</creatorcontrib><creatorcontrib>Wollack, Edward J.</creatorcontrib><creatorcontrib>Xu, Zhilei</creatorcontrib><creatorcontrib>Stony Brook Univ., NY (United States)</creatorcontrib><title>Atacama Cosmology Telescope: Constraints on prerecombination early dark energy</title><title>Physical review. D</title><description>The early dark energy (EDE) scenario aims to increase the value of the Hubble constant (H0) inferred from cosmic microwave background (CMB) data over that found in the standard cosmological model (Λ CDM ), via the introduction of a new form of energy density in the early Universe. The EDE component briefly accelerates cosmic expansion just prior to recombination, which reduces the physical size of the sound horizon imprinted in the CMB. Previous work has found that nonzero EDE is not preferred by Planck CMB power spectrum data alone, which yield a 95% confidence level (C.L.) upper limit fEDE < 0.087 on the maximal fractional contribution of the EDE field to the cosmic energy budget. In this paper, we fit the EDE model to CMB data from the Atacama Cosmology Telescope (ACT) data release 4. We find that a combination of ACT, large-scale Planck TT (similar to WMAP), Planck CMB lensing, and BAO data prefers the existence of EDE at >99.7 % C .L . : fEDE = 0.091$^{+0.020}_{-0.036}$, with H0 = 70.9$^{+1.0}_{-2.0}$ km/s/Mpc (both 68% C.L.). From a model-selection standpoint, we find that EDE is favored over Λ CDM by these data at roughly 3 σ significance. In contrast, a joint analysis of the full Planck and ACT data yields no evidence for EDE, as previously found for Planck alone. We show that the preference for EDE in ACT alone is driven by its TE and EE power spectrum data. The tight constraint on EDE from Planck alone is driven by its high-ℓ TT power spectrum data. Understanding whether these differing constraints are physical in nature, due to systematics, or simply a rare statistical fluctuation is of high priority. Here, the best-fit EDE models to ACT and Planck exhibit coherent differences across a wide range of multipoles in TE and EE, indicating that a powerful test of this scenario is anticipated with near-future data from ACT and other ground-based experiments.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Cosmic microwave background</subject><subject>Cosmological parameters</subject><subject>Dark energy</subject><subject>Evolution of the Universe</subject><issn>2470-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjM1Kw0AURmehYKl9AjfBfeq9c5OZjLsSfyoUFanrMp3cttFkpmQGIW9vQFfn4_BxhLhBWCIC3b2fxvjBPw9LhHKJkkpSF2ImCw05AMKVWMT4BdNUYDTiTLyuknW2t1kdYh-6cByzLXccXTjz_SR9TINtfYpZ8Nl54IFd6Pett6mdBNuhG7PGDt8Zex6O47W4PNgu8uKfc_H59Lit1_nm7fmlXm3ygChTbqEyha6oMrQvXYMElkGqRpJBUpXRiooDodJKEeqisfZQaTCEDbnpYmgubv-6IaZ2F12b2J1c8J5d2kkJJQHSL-2aT4w</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Hill, J. Colin</creator><creator>Calabrese, Erminia</creator><creator>Aiola, Simone</creator><creator>Battaglia, Nicholas</creator><creator>Bolliet, Boris</creator><creator>Choi, Steve K.</creator><creator>Devlin, Mark J.</creator><creator>Duivenvoorden, Adriaan J.</creator><creator>Dunkley, Jo</creator><creator>Ferraro, Simone</creator><creator>Gallardo, Patricio A.</creator><creator>Gluscevic, Vera</creator><creator>Hasselfield, Matthew</creator><creator>Hilton, Matt</creator><creator>Hincks, Adam D.</creator><creator>Hložek, Renée</creator><creator>Koopman, Brian J.</creator><creator>Kosowsky, Arthur</creator><creator>La Posta, Adrien</creator><creator>Louis, Thibaut</creator><creator>Madhavacheril, Mathew S.</creator><creator>McMahon, Jeff</creator><creator>Moodley, Kavilan</creator><creator>Naess, Sigurd</creator><creator>Natale, Umberto</creator><creator>Nati, Federico</creator><creator>Newburgh, Laura</creator><creator>Niemack, Michael D.</creator><creator>Page, Lyman A.</creator><creator>Partridge, Bruce</creator><creator>Qu, Frank J.</creator><creator>Salatino, Maria</creator><creator>Schillaci, Alessandro</creator><creator>Sehgal, Neelima</creator><creator>Sherwin, Blake D.</creator><creator>Sifón, Cristóbal</creator><creator>Spergel, David N.</creator><creator>Staggs, Suzanne T.</creator><creator>Storer, Emilie R.</creator><creator>van Engelen, Alexander</creator><creator>Vavagiakis, Eve M.</creator><creator>Wollack, Edward J.</creator><creator>Xu, Zhilei</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000295390835</orcidid></search><sort><creationdate>20220630</creationdate><title>Atacama Cosmology Telescope: Constraints on prerecombination early dark energy</title><author>Hill, J. Colin ; Calabrese, Erminia ; Aiola, Simone ; Battaglia, Nicholas ; Bolliet, Boris ; Choi, Steve K. ; Devlin, Mark J. ; Duivenvoorden, Adriaan J. ; Dunkley, Jo ; Ferraro, Simone ; Gallardo, Patricio A. ; Gluscevic, Vera ; Hasselfield, Matthew ; Hilton, Matt ; Hincks, Adam D. ; Hložek, Renée ; Koopman, Brian J. ; Kosowsky, Arthur ; La Posta, Adrien ; Louis, Thibaut ; Madhavacheril, Mathew S. ; McMahon, Jeff ; Moodley, Kavilan ; Naess, Sigurd ; Natale, Umberto ; Nati, Federico ; Newburgh, Laura ; Niemack, Michael D. ; Page, Lyman A. ; Partridge, Bruce ; Qu, Frank J. ; Salatino, Maria ; Schillaci, Alessandro ; Sehgal, Neelima ; Sherwin, Blake D. ; Sifón, Cristóbal ; Spergel, David N. ; Staggs, Suzanne T. ; Storer, Emilie R. ; van Engelen, Alexander ; Vavagiakis, Eve M. ; Wollack, Edward J. ; Xu, Zhilei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o112t-a0894783893b5cd130ae026d239136897634f3167663174daaf870931d3c39193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Cosmic microwave background</topic><topic>Cosmological parameters</topic><topic>Dark energy</topic><topic>Evolution of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hill, J. Colin</creatorcontrib><creatorcontrib>Calabrese, Erminia</creatorcontrib><creatorcontrib>Aiola, Simone</creatorcontrib><creatorcontrib>Battaglia, Nicholas</creatorcontrib><creatorcontrib>Bolliet, Boris</creatorcontrib><creatorcontrib>Choi, Steve K.</creatorcontrib><creatorcontrib>Devlin, Mark J.</creatorcontrib><creatorcontrib>Duivenvoorden, Adriaan J.</creatorcontrib><creatorcontrib>Dunkley, Jo</creatorcontrib><creatorcontrib>Ferraro, Simone</creatorcontrib><creatorcontrib>Gallardo, Patricio A.</creatorcontrib><creatorcontrib>Gluscevic, Vera</creatorcontrib><creatorcontrib>Hasselfield, Matthew</creatorcontrib><creatorcontrib>Hilton, Matt</creatorcontrib><creatorcontrib>Hincks, Adam D.</creatorcontrib><creatorcontrib>Hložek, Renée</creatorcontrib><creatorcontrib>Koopman, Brian J.</creatorcontrib><creatorcontrib>Kosowsky, Arthur</creatorcontrib><creatorcontrib>La Posta, Adrien</creatorcontrib><creatorcontrib>Louis, Thibaut</creatorcontrib><creatorcontrib>Madhavacheril, Mathew S.</creatorcontrib><creatorcontrib>McMahon, Jeff</creatorcontrib><creatorcontrib>Moodley, Kavilan</creatorcontrib><creatorcontrib>Naess, Sigurd</creatorcontrib><creatorcontrib>Natale, Umberto</creatorcontrib><creatorcontrib>Nati, Federico</creatorcontrib><creatorcontrib>Newburgh, Laura</creatorcontrib><creatorcontrib>Niemack, Michael D.</creatorcontrib><creatorcontrib>Page, Lyman A.</creatorcontrib><creatorcontrib>Partridge, Bruce</creatorcontrib><creatorcontrib>Qu, Frank J.</creatorcontrib><creatorcontrib>Salatino, Maria</creatorcontrib><creatorcontrib>Schillaci, Alessandro</creatorcontrib><creatorcontrib>Sehgal, Neelima</creatorcontrib><creatorcontrib>Sherwin, Blake D.</creatorcontrib><creatorcontrib>Sifón, Cristóbal</creatorcontrib><creatorcontrib>Spergel, David N.</creatorcontrib><creatorcontrib>Staggs, Suzanne T.</creatorcontrib><creatorcontrib>Storer, Emilie R.</creatorcontrib><creatorcontrib>van Engelen, Alexander</creatorcontrib><creatorcontrib>Vavagiakis, Eve M.</creatorcontrib><creatorcontrib>Wollack, Edward J.</creatorcontrib><creatorcontrib>Xu, Zhilei</creatorcontrib><creatorcontrib>Stony Brook Univ., NY (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hill, J. Colin</au><au>Calabrese, Erminia</au><au>Aiola, Simone</au><au>Battaglia, Nicholas</au><au>Bolliet, Boris</au><au>Choi, Steve K.</au><au>Devlin, Mark J.</au><au>Duivenvoorden, Adriaan J.</au><au>Dunkley, Jo</au><au>Ferraro, Simone</au><au>Gallardo, Patricio A.</au><au>Gluscevic, Vera</au><au>Hasselfield, Matthew</au><au>Hilton, Matt</au><au>Hincks, Adam D.</au><au>Hložek, Renée</au><au>Koopman, Brian J.</au><au>Kosowsky, Arthur</au><au>La Posta, Adrien</au><au>Louis, Thibaut</au><au>Madhavacheril, Mathew S.</au><au>McMahon, Jeff</au><au>Moodley, Kavilan</au><au>Naess, Sigurd</au><au>Natale, Umberto</au><au>Nati, Federico</au><au>Newburgh, Laura</au><au>Niemack, Michael D.</au><au>Page, Lyman A.</au><au>Partridge, Bruce</au><au>Qu, Frank J.</au><au>Salatino, Maria</au><au>Schillaci, Alessandro</au><au>Sehgal, Neelima</au><au>Sherwin, Blake D.</au><au>Sifón, Cristóbal</au><au>Spergel, David N.</au><au>Staggs, Suzanne T.</au><au>Storer, Emilie R.</au><au>van Engelen, Alexander</au><au>Vavagiakis, Eve M.</au><au>Wollack, Edward J.</au><au>Xu, Zhilei</au><aucorp>Stony Brook Univ., NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atacama Cosmology Telescope: Constraints on prerecombination early dark energy</atitle><jtitle>Physical review. D</jtitle><date>2022-06-30</date><risdate>2022</risdate><volume>105</volume><issue>12</issue><issn>2470-0010</issn><abstract>The early dark energy (EDE) scenario aims to increase the value of the Hubble constant (H0) inferred from cosmic microwave background (CMB) data over that found in the standard cosmological model (Λ CDM ), via the introduction of a new form of energy density in the early Universe. The EDE component briefly accelerates cosmic expansion just prior to recombination, which reduces the physical size of the sound horizon imprinted in the CMB. Previous work has found that nonzero EDE is not preferred by Planck CMB power spectrum data alone, which yield a 95% confidence level (C.L.) upper limit fEDE < 0.087 on the maximal fractional contribution of the EDE field to the cosmic energy budget. In this paper, we fit the EDE model to CMB data from the Atacama Cosmology Telescope (ACT) data release 4. We find that a combination of ACT, large-scale Planck TT (similar to WMAP), Planck CMB lensing, and BAO data prefers the existence of EDE at >99.7 % C .L . : fEDE = 0.091$^{+0.020}_{-0.036}$, with H0 = 70.9$^{+1.0}_{-2.0}$ km/s/Mpc (both 68% C.L.). From a model-selection standpoint, we find that EDE is favored over Λ CDM by these data at roughly 3 σ significance. In contrast, a joint analysis of the full Planck and ACT data yields no evidence for EDE, as previously found for Planck alone. We show that the preference for EDE in ACT alone is driven by its TE and EE power spectrum data. The tight constraint on EDE from Planck alone is driven by its high-ℓ TT power spectrum data. Understanding whether these differing constraints are physical in nature, due to systematics, or simply a rare statistical fluctuation is of high priority. Here, the best-fit EDE models to ACT and Planck exhibit coherent differences across a wide range of multipoles in TE and EE, indicating that a powerful test of this scenario is anticipated with near-future data from ACT and other ground-based experiments.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevD.105.123536</doi><orcidid>https://orcid.org/0000000295390835</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2022-06, Vol.105 (12) |
issn | 2470-0010 |
language | eng |
recordid | cdi_osti_scitechconnect_2205301 |
source | American Physical Society Journals |
subjects | ASTRONOMY AND ASTROPHYSICS Cosmic microwave background Cosmological parameters Dark energy Evolution of the Universe |
title | Atacama Cosmology Telescope: Constraints on prerecombination early dark energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atacama%20Cosmology%20Telescope:%20Constraints%20on%20prerecombination%20early%20dark%20energy&rft.jtitle=Physical%20review.%20D&rft.au=Hill,%20J.%20Colin&rft.aucorp=Stony%20Brook%20Univ.,%20NY%20(United%20States)&rft.date=2022-06-30&rft.volume=105&rft.issue=12&rft.issn=2470-0010&rft_id=info:doi/10.1103/PhysRevD.105.123536&rft_dat=%3Costi%3E2205301%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |