Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two‐Dimensional Metal–Organic Frameworks

Metal–organic frameworks (MOFs) with mobile charges have attracted significant attention due to their potential applications in photoelectric devices, chemical resistance sensors, and catalysis. However, fundamental understanding of the charge transport pathway within the framework and the key prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2023-12, Vol.62 (50), p.e202309505-n/a
Hauptverfasser: Wang, Denan, Ostresh, Sarah, Streater, Daniel, He, Peilei, Nyakuchena, James, Ma, Qiushi, Zhang, Xiaoyi, Neu, Jens, Brudvig, Gary W., Huang, Jier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page e202309505
container_title Angewandte Chemie (International ed.)
container_volume 62
creator Wang, Denan
Ostresh, Sarah
Streater, Daniel
He, Peilei
Nyakuchena, James
Ma, Qiushi
Zhang, Xiaoyi
Neu, Jens
Brudvig, Gary W.
Huang, Jier
description Metal–organic frameworks (MOFs) with mobile charges have attracted significant attention due to their potential applications in photoelectric devices, chemical resistance sensors, and catalysis. However, fundamental understanding of the charge transport pathway within the framework and the key properties that determine the performance of conductive MOFs in photoelectric devices remain underexplored. Herein, we report the mechanisms of photoinduced charge transport and electron dynamics in the conductive 2D M−HHTP (M=Cu, Zn or Cu/Zn mixed; HHTP=2,3,6,7,10,11‐hexahydroxytriphenylene) MOFs and their correlation with photoconductivity using the combination of time‐resolved terahertz spectroscopy, optical transient absorption spectroscopy, X‐ray transient absorption spectroscopy, and density functional theory (DFT) calculations. We identify the through‐space hole transport mechanism through the interlayer sheet π–π interaction, where photoinduced hole state resides in HHTP ligand and electronic state is localized at the metal center. Moreover, the photoconductivity of the Cu−HHTP MOF is found to be 65.5 S m−1, which represents the record high photoconductivity for porous MOF materials based on catecholate ligands. The mechanisms of photoinduced charge transport and electron dynamics in conductive 2D metal–organic frameworks (MOFs) and their correlation with photoconductivity are investigated using multiple spectroscopy techniques. A through‐space hole transport mechanism through the interlayer sheet π–π interaction is identified, where the photoinduced hole state resides in the HHTP ligand and the electronic state is localized at the metal center.
doi_str_mv 10.1002/anie.202309505
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2205269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898376071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4175-4050af6a023cb88ee479e56baf990d41e10ec1d906cbc1c14a4c223c1b1052fb3</originalsourceid><addsrcrecordid>eNqF0bluGzEQBuCF4QDxkTY14TRpVia53KsUfEQGfMFQaoI7mtXS2SUVkrKgzsgTGPAb-klMWUEMuEk1LL4hZuZPkq-Mjhil_FgZjSNOeUbrnOY7yR7LOUuzssx241tkWVpWOfuc7Ht_H31V0WIv-XNqB22UCeTO9khsSyabOnXK-IV1gdyq0K3UmmhDxtBpfNBmTu4QrJuRiZ535LazwYI1syUE_aDDG52u7Mvj06ke0HhtjerJFQbVvzw-37h5HBTIuVMDrqz75Q-TT63qPX75Ww-Sn-dn05NJennz4-JkfJmCYGWeCppT1RYqLghNVSGKssa8aFRb13QmGDKKwGY1LaABBkwoATxa1jCa87bJDpKj7b_WBy096IDQxcENQpCcR1TUEX3fooWzv5fogxy0B-x7ZdAuvYxnY1yIkmeRfvtA7-3SxV03qq6ysqAli2q0VeCs9w5buXB6UG4tGZWb3OQmN_kvt9hQbxtWusf1f7QcX1-cvfe-AqM8nv0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898376071</pqid></control><display><type>article</type><title>Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two‐Dimensional Metal–Organic Frameworks</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Wang, Denan ; Ostresh, Sarah ; Streater, Daniel ; He, Peilei ; Nyakuchena, James ; Ma, Qiushi ; Zhang, Xiaoyi ; Neu, Jens ; Brudvig, Gary W. ; Huang, Jier</creator><creatorcontrib>Wang, Denan ; Ostresh, Sarah ; Streater, Daniel ; He, Peilei ; Nyakuchena, James ; Ma, Qiushi ; Zhang, Xiaoyi ; Neu, Jens ; Brudvig, Gary W. ; Huang, Jier</creatorcontrib><description>Metal–organic frameworks (MOFs) with mobile charges have attracted significant attention due to their potential applications in photoelectric devices, chemical resistance sensors, and catalysis. However, fundamental understanding of the charge transport pathway within the framework and the key properties that determine the performance of conductive MOFs in photoelectric devices remain underexplored. Herein, we report the mechanisms of photoinduced charge transport and electron dynamics in the conductive 2D M−HHTP (M=Cu, Zn or Cu/Zn mixed; HHTP=2,3,6,7,10,11‐hexahydroxytriphenylene) MOFs and their correlation with photoconductivity using the combination of time‐resolved terahertz spectroscopy, optical transient absorption spectroscopy, X‐ray transient absorption spectroscopy, and density functional theory (DFT) calculations. We identify the through‐space hole transport mechanism through the interlayer sheet π–π interaction, where photoinduced hole state resides in HHTP ligand and electronic state is localized at the metal center. Moreover, the photoconductivity of the Cu−HHTP MOF is found to be 65.5 S m−1, which represents the record high photoconductivity for porous MOF materials based on catecholate ligands. The mechanisms of photoinduced charge transport and electron dynamics in conductive 2D metal–organic frameworks (MOFs) and their correlation with photoconductivity are investigated using multiple spectroscopy techniques. A through‐space hole transport mechanism through the interlayer sheet π–π interaction is identified, where the photoinduced hole state resides in the HHTP ligand and the electronic state is localized at the metal center.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202309505</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D-MOF ; Absorption spectroscopy ; Catalysis ; Charge transport ; Chemical sensors ; Copper ; Density functional theory ; DFT Calculation ; Electron states ; Hole Transport ; Interlayers ; Ligands ; Metal-organic frameworks ; Photoconductivity ; Photoelectricity ; Porous materials ; Spectrum analysis ; Terahertz Spectroscopy</subject><ispartof>Angewandte Chemie (International ed.), 2023-12, Vol.62 (50), p.e202309505-n/a</ispartof><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4175-4050af6a023cb88ee479e56baf990d41e10ec1d906cbc1c14a4c223c1b1052fb3</citedby><cites>FETCH-LOGICAL-c4175-4050af6a023cb88ee479e56baf990d41e10ec1d906cbc1c14a4c223c1b1052fb3</cites><orcidid>0000-0002-2885-5786 ; 0000000228855786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202309505$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202309505$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2205269$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Denan</creatorcontrib><creatorcontrib>Ostresh, Sarah</creatorcontrib><creatorcontrib>Streater, Daniel</creatorcontrib><creatorcontrib>He, Peilei</creatorcontrib><creatorcontrib>Nyakuchena, James</creatorcontrib><creatorcontrib>Ma, Qiushi</creatorcontrib><creatorcontrib>Zhang, Xiaoyi</creatorcontrib><creatorcontrib>Neu, Jens</creatorcontrib><creatorcontrib>Brudvig, Gary W.</creatorcontrib><creatorcontrib>Huang, Jier</creatorcontrib><title>Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two‐Dimensional Metal–Organic Frameworks</title><title>Angewandte Chemie (International ed.)</title><description>Metal–organic frameworks (MOFs) with mobile charges have attracted significant attention due to their potential applications in photoelectric devices, chemical resistance sensors, and catalysis. However, fundamental understanding of the charge transport pathway within the framework and the key properties that determine the performance of conductive MOFs in photoelectric devices remain underexplored. Herein, we report the mechanisms of photoinduced charge transport and electron dynamics in the conductive 2D M−HHTP (M=Cu, Zn or Cu/Zn mixed; HHTP=2,3,6,7,10,11‐hexahydroxytriphenylene) MOFs and their correlation with photoconductivity using the combination of time‐resolved terahertz spectroscopy, optical transient absorption spectroscopy, X‐ray transient absorption spectroscopy, and density functional theory (DFT) calculations. We identify the through‐space hole transport mechanism through the interlayer sheet π–π interaction, where photoinduced hole state resides in HHTP ligand and electronic state is localized at the metal center. Moreover, the photoconductivity of the Cu−HHTP MOF is found to be 65.5 S m−1, which represents the record high photoconductivity for porous MOF materials based on catecholate ligands. The mechanisms of photoinduced charge transport and electron dynamics in conductive 2D metal–organic frameworks (MOFs) and their correlation with photoconductivity are investigated using multiple spectroscopy techniques. A through‐space hole transport mechanism through the interlayer sheet π–π interaction is identified, where the photoinduced hole state resides in the HHTP ligand and the electronic state is localized at the metal center.</description><subject>2D-MOF</subject><subject>Absorption spectroscopy</subject><subject>Catalysis</subject><subject>Charge transport</subject><subject>Chemical sensors</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>DFT Calculation</subject><subject>Electron states</subject><subject>Hole Transport</subject><subject>Interlayers</subject><subject>Ligands</subject><subject>Metal-organic frameworks</subject><subject>Photoconductivity</subject><subject>Photoelectricity</subject><subject>Porous materials</subject><subject>Spectrum analysis</subject><subject>Terahertz Spectroscopy</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqF0bluGzEQBuCF4QDxkTY14TRpVia53KsUfEQGfMFQaoI7mtXS2SUVkrKgzsgTGPAb-klMWUEMuEk1LL4hZuZPkq-Mjhil_FgZjSNOeUbrnOY7yR7LOUuzssx241tkWVpWOfuc7Ht_H31V0WIv-XNqB22UCeTO9khsSyabOnXK-IV1gdyq0K3UmmhDxtBpfNBmTu4QrJuRiZ535LazwYI1syUE_aDDG52u7Mvj06ke0HhtjerJFQbVvzw-37h5HBTIuVMDrqz75Q-TT63qPX75Ww-Sn-dn05NJennz4-JkfJmCYGWeCppT1RYqLghNVSGKssa8aFRb13QmGDKKwGY1LaABBkwoATxa1jCa87bJDpKj7b_WBy096IDQxcENQpCcR1TUEX3fooWzv5fogxy0B-x7ZdAuvYxnY1yIkmeRfvtA7-3SxV03qq6ysqAli2q0VeCs9w5buXB6UG4tGZWb3OQmN_kvt9hQbxtWusf1f7QcX1-cvfe-AqM8nv0</recordid><startdate>20231211</startdate><enddate>20231211</enddate><creator>Wang, Denan</creator><creator>Ostresh, Sarah</creator><creator>Streater, Daniel</creator><creator>He, Peilei</creator><creator>Nyakuchena, James</creator><creator>Ma, Qiushi</creator><creator>Zhang, Xiaoyi</creator><creator>Neu, Jens</creator><creator>Brudvig, Gary W.</creator><creator>Huang, Jier</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2885-5786</orcidid><orcidid>https://orcid.org/0000000228855786</orcidid></search><sort><creationdate>20231211</creationdate><title>Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two‐Dimensional Metal–Organic Frameworks</title><author>Wang, Denan ; Ostresh, Sarah ; Streater, Daniel ; He, Peilei ; Nyakuchena, James ; Ma, Qiushi ; Zhang, Xiaoyi ; Neu, Jens ; Brudvig, Gary W. ; Huang, Jier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4175-4050af6a023cb88ee479e56baf990d41e10ec1d906cbc1c14a4c223c1b1052fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D-MOF</topic><topic>Absorption spectroscopy</topic><topic>Catalysis</topic><topic>Charge transport</topic><topic>Chemical sensors</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>DFT Calculation</topic><topic>Electron states</topic><topic>Hole Transport</topic><topic>Interlayers</topic><topic>Ligands</topic><topic>Metal-organic frameworks</topic><topic>Photoconductivity</topic><topic>Photoelectricity</topic><topic>Porous materials</topic><topic>Spectrum analysis</topic><topic>Terahertz Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Denan</creatorcontrib><creatorcontrib>Ostresh, Sarah</creatorcontrib><creatorcontrib>Streater, Daniel</creatorcontrib><creatorcontrib>He, Peilei</creatorcontrib><creatorcontrib>Nyakuchena, James</creatorcontrib><creatorcontrib>Ma, Qiushi</creatorcontrib><creatorcontrib>Zhang, Xiaoyi</creatorcontrib><creatorcontrib>Neu, Jens</creatorcontrib><creatorcontrib>Brudvig, Gary W.</creatorcontrib><creatorcontrib>Huang, Jier</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Denan</au><au>Ostresh, Sarah</au><au>Streater, Daniel</au><au>He, Peilei</au><au>Nyakuchena, James</au><au>Ma, Qiushi</au><au>Zhang, Xiaoyi</au><au>Neu, Jens</au><au>Brudvig, Gary W.</au><au>Huang, Jier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two‐Dimensional Metal–Organic Frameworks</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><date>2023-12-11</date><risdate>2023</risdate><volume>62</volume><issue>50</issue><spage>e202309505</spage><epage>n/a</epage><pages>e202309505-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Metal–organic frameworks (MOFs) with mobile charges have attracted significant attention due to their potential applications in photoelectric devices, chemical resistance sensors, and catalysis. However, fundamental understanding of the charge transport pathway within the framework and the key properties that determine the performance of conductive MOFs in photoelectric devices remain underexplored. Herein, we report the mechanisms of photoinduced charge transport and electron dynamics in the conductive 2D M−HHTP (M=Cu, Zn or Cu/Zn mixed; HHTP=2,3,6,7,10,11‐hexahydroxytriphenylene) MOFs and their correlation with photoconductivity using the combination of time‐resolved terahertz spectroscopy, optical transient absorption spectroscopy, X‐ray transient absorption spectroscopy, and density functional theory (DFT) calculations. We identify the through‐space hole transport mechanism through the interlayer sheet π–π interaction, where photoinduced hole state resides in HHTP ligand and electronic state is localized at the metal center. Moreover, the photoconductivity of the Cu−HHTP MOF is found to be 65.5 S m−1, which represents the record high photoconductivity for porous MOF materials based on catecholate ligands. The mechanisms of photoinduced charge transport and electron dynamics in conductive 2D metal–organic frameworks (MOFs) and their correlation with photoconductivity are investigated using multiple spectroscopy techniques. A through‐space hole transport mechanism through the interlayer sheet π–π interaction is identified, where the photoinduced hole state resides in the HHTP ligand and the electronic state is localized at the metal center.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202309505</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-2885-5786</orcidid><orcidid>https://orcid.org/0000000228855786</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2023-12, Vol.62 (50), p.e202309505-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_2205269
source Wiley Online Library - AutoHoldings Journals
subjects 2D-MOF
Absorption spectroscopy
Catalysis
Charge transport
Chemical sensors
Copper
Density functional theory
DFT Calculation
Electron states
Hole Transport
Interlayers
Ligands
Metal-organic frameworks
Photoconductivity
Photoelectricity
Porous materials
Spectrum analysis
Terahertz Spectroscopy
title Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two‐Dimensional Metal–Organic Frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dominant%20Role%20of%20Hole%20Transport%20Pathway%20in%20Achieving%20Record%20High%20Photoconductivity%20in%20Two%E2%80%90Dimensional%20Metal%E2%80%93Organic%20Frameworks&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Wang,%20Denan&rft.date=2023-12-11&rft.volume=62&rft.issue=50&rft.spage=e202309505&rft.epage=n/a&rft.pages=e202309505-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202309505&rft_dat=%3Cproquest_osti_%3E2898376071%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898376071&rft_id=info:pmid/&rfr_iscdi=true