CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES

We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2012-08, Vol.755 (1), p.1-24
Hauptverfasser: NOBLE, Scott C, MUNDIM, Bruno C, NAKANO, Hiroyuki, KROLIK, Julian H, CAMPANELLI, Manuela, ZLOCHOWER, Yosef, YUNES, Nicolás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 1
container_title The Astrophysical journal
container_volume 755
creator NOBLE, Scott C
MUNDIM, Bruno C
NAKANO, Hiroyuki
KROLIK, Julian H
CAMPANELLI, Manuela
ZLOCHOWER, Yosef
YUNES, Nicolás
description We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.
doi_str_mv 10.1088/0004-637X/755/1/51
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22039152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709778501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-6feee5eaa4bdc2a251f9f2d9b38cbf8b54bf45d59f7cf4652e13b7bb8c0742d93</originalsourceid><addsrcrecordid>eNqNkcFLwzAYxYMoOKf_gKeCCF7qkjRp0mPX1a3YtdJt4E4hzRKsbOtsuoP_vS0bO3v5Hh_83ju8B8Ajgq8Icj6CEBLX99jniFE6QiOKrsAAUY-7xKPsGgwuwC24s_a7f3EQDEAWJUW0mo-TLCzWzjycZvEyn60nRT5ZZ-E8iZwwiop4meSZk2TLvDuLj6QI0ySbOmfXOA2jd2eWp_HiHtwYubX64axDsHqLl9HMTfNpEoWpqwiiresbrTXVUpJyo7DEFJnA4E1QelyVhpeUlIbQDQ0MU4b4FGvklawsuYKMdJw3BE-n3Nq2lbCqarX6UvV-r1UrMIZegCjuqJcTdWjqn6O2rdhVVuntVu51fbQCMRgwxilE_0ERYRxj1qH4hKqmtrbRRhyaaiebX4Gg6NcQfbuiL1t0awgkaJ__fM6XVsmtaeReVfbixD5HnPrI-wPbKIKh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701478227</pqid></control><display><type>article</type><title>CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>NOBLE, Scott C ; MUNDIM, Bruno C ; NAKANO, Hiroyuki ; KROLIK, Julian H ; CAMPANELLI, Manuela ; ZLOCHOWER, Yosef ; YUNES, Nicolás</creator><creatorcontrib>NOBLE, Scott C ; MUNDIM, Bruno C ; NAKANO, Hiroyuki ; KROLIK, Julian H ; CAMPANELLI, Manuela ; ZLOCHOWER, Yosef ; YUNES, Nicolás</creatorcontrib><description>We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/755/1/51</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP</publisher><subject>ACCRETION DISKS ; APPROXIMATIONS ; ASTRONOMY ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; BLACK HOLES ; Black holes (astronomy) ; COMPRESSION ; COMPUTERIZED SIMULATION ; DENSITY ; Earth, ocean, space ; Evolution ; Exact sciences and technology ; EXTRAPOLATION ; GALAXY NUCLEI ; Gravitation ; GRAVITATIONAL RADIATION ; Inflow ; LUMINOSITY ; MAGNETOHYDRODYNAMICS ; MODULATION ; Orbitals ; PERIODICITY ; REST MASS ; Separation ; SPACE-TIME ; STAR EVOLUTION ; TORQUE</subject><ispartof>The Astrophysical journal, 2012-08, Vol.755 (1), p.1-24</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-6feee5eaa4bdc2a251f9f2d9b38cbf8b54bf45d59f7cf4652e13b7bb8c0742d93</citedby><cites>FETCH-LOGICAL-c415t-6feee5eaa4bdc2a251f9f2d9b38cbf8b54bf45d59f7cf4652e13b7bb8c0742d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26818561$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22039152$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>NOBLE, Scott C</creatorcontrib><creatorcontrib>MUNDIM, Bruno C</creatorcontrib><creatorcontrib>NAKANO, Hiroyuki</creatorcontrib><creatorcontrib>KROLIK, Julian H</creatorcontrib><creatorcontrib>CAMPANELLI, Manuela</creatorcontrib><creatorcontrib>ZLOCHOWER, Yosef</creatorcontrib><creatorcontrib>YUNES, Nicolás</creatorcontrib><title>CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES</title><title>The Astrophysical journal</title><description>We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.</description><subject>ACCRETION DISKS</subject><subject>APPROXIMATIONS</subject><subject>ASTRONOMY</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>BLACK HOLES</subject><subject>Black holes (astronomy)</subject><subject>COMPRESSION</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DENSITY</subject><subject>Earth, ocean, space</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>EXTRAPOLATION</subject><subject>GALAXY NUCLEI</subject><subject>Gravitation</subject><subject>GRAVITATIONAL RADIATION</subject><subject>Inflow</subject><subject>LUMINOSITY</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MODULATION</subject><subject>Orbitals</subject><subject>PERIODICITY</subject><subject>REST MASS</subject><subject>Separation</subject><subject>SPACE-TIME</subject><subject>STAR EVOLUTION</subject><subject>TORQUE</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkcFLwzAYxYMoOKf_gKeCCF7qkjRp0mPX1a3YtdJt4E4hzRKsbOtsuoP_vS0bO3v5Hh_83ju8B8Ajgq8Icj6CEBLX99jniFE6QiOKrsAAUY-7xKPsGgwuwC24s_a7f3EQDEAWJUW0mo-TLCzWzjycZvEyn60nRT5ZZ-E8iZwwiop4meSZk2TLvDuLj6QI0ySbOmfXOA2jd2eWp_HiHtwYubX64axDsHqLl9HMTfNpEoWpqwiiresbrTXVUpJyo7DEFJnA4E1QelyVhpeUlIbQDQ0MU4b4FGvklawsuYKMdJw3BE-n3Nq2lbCqarX6UvV-r1UrMIZegCjuqJcTdWjqn6O2rdhVVuntVu51fbQCMRgwxilE_0ERYRxj1qH4hKqmtrbRRhyaaiebX4Gg6NcQfbuiL1t0awgkaJ__fM6XVsmtaeReVfbixD5HnPrI-wPbKIKh</recordid><startdate>20120810</startdate><enddate>20120810</enddate><creator>NOBLE, Scott C</creator><creator>MUNDIM, Bruno C</creator><creator>NAKANO, Hiroyuki</creator><creator>KROLIK, Julian H</creator><creator>CAMPANELLI, Manuela</creator><creator>ZLOCHOWER, Yosef</creator><creator>YUNES, Nicolás</creator><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20120810</creationdate><title>CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES</title><author>NOBLE, Scott C ; MUNDIM, Bruno C ; NAKANO, Hiroyuki ; KROLIK, Julian H ; CAMPANELLI, Manuela ; ZLOCHOWER, Yosef ; YUNES, Nicolás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-6feee5eaa4bdc2a251f9f2d9b38cbf8b54bf45d59f7cf4652e13b7bb8c0742d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ACCRETION DISKS</topic><topic>APPROXIMATIONS</topic><topic>ASTRONOMY</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>BLACK HOLES</topic><topic>Black holes (astronomy)</topic><topic>COMPRESSION</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DENSITY</topic><topic>Earth, ocean, space</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>EXTRAPOLATION</topic><topic>GALAXY NUCLEI</topic><topic>Gravitation</topic><topic>GRAVITATIONAL RADIATION</topic><topic>Inflow</topic><topic>LUMINOSITY</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MODULATION</topic><topic>Orbitals</topic><topic>PERIODICITY</topic><topic>REST MASS</topic><topic>Separation</topic><topic>SPACE-TIME</topic><topic>STAR EVOLUTION</topic><topic>TORQUE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NOBLE, Scott C</creatorcontrib><creatorcontrib>MUNDIM, Bruno C</creatorcontrib><creatorcontrib>NAKANO, Hiroyuki</creatorcontrib><creatorcontrib>KROLIK, Julian H</creatorcontrib><creatorcontrib>CAMPANELLI, Manuela</creatorcontrib><creatorcontrib>ZLOCHOWER, Yosef</creatorcontrib><creatorcontrib>YUNES, Nicolás</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NOBLE, Scott C</au><au>MUNDIM, Bruno C</au><au>NAKANO, Hiroyuki</au><au>KROLIK, Julian H</au><au>CAMPANELLI, Manuela</au><au>ZLOCHOWER, Yosef</au><au>YUNES, Nicolás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES</atitle><jtitle>The Astrophysical journal</jtitle><date>2012-08-10</date><risdate>2012</risdate><volume>755</volume><issue>1</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.</abstract><cop>Bristol</cop><pub>IOP</pub><doi>10.1088/0004-637X/755/1/51</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2012-08, Vol.755 (1), p.1-24
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22039152
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects ACCRETION DISKS
APPROXIMATIONS
ASTRONOMY
ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
BLACK HOLES
Black holes (astronomy)
COMPRESSION
COMPUTERIZED SIMULATION
DENSITY
Earth, ocean, space
Evolution
Exact sciences and technology
EXTRAPOLATION
GALAXY NUCLEI
Gravitation
GRAVITATIONAL RADIATION
Inflow
LUMINOSITY
MAGNETOHYDRODYNAMICS
MODULATION
Orbitals
PERIODICITY
REST MASS
Separation
SPACE-TIME
STAR EVOLUTION
TORQUE
title CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CIRCUMBINARY%20MAGNETOHYDRODYNAMIC%20ACCRETION%20INTO%20INSPIRALING%20BINARY%20BLACK%20HOLES&rft.jtitle=The%20Astrophysical%20journal&rft.au=NOBLE,%20Scott%20C&rft.date=2012-08-10&rft.volume=755&rft.issue=1&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/755/1/51&rft_dat=%3Cproquest_osti_%3E1709778501%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701478227&rft_id=info:pmid/&rfr_iscdi=true