CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES
We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime a...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2012-08, Vol.755 (1), p.1-24 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | The Astrophysical journal |
container_volume | 755 |
creator | NOBLE, Scott C MUNDIM, Bruno C NAKANO, Hiroyuki KROLIK, Julian H CAMPANELLI, Manuela ZLOCHOWER, Yosef YUNES, Nicolás |
description | We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity. |
doi_str_mv | 10.1088/0004-637X/755/1/51 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22039152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709778501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-6feee5eaa4bdc2a251f9f2d9b38cbf8b54bf45d59f7cf4652e13b7bb8c0742d93</originalsourceid><addsrcrecordid>eNqNkcFLwzAYxYMoOKf_gKeCCF7qkjRp0mPX1a3YtdJt4E4hzRKsbOtsuoP_vS0bO3v5Hh_83ju8B8Ajgq8Icj6CEBLX99jniFE6QiOKrsAAUY-7xKPsGgwuwC24s_a7f3EQDEAWJUW0mo-TLCzWzjycZvEyn60nRT5ZZ-E8iZwwiop4meSZk2TLvDuLj6QI0ySbOmfXOA2jd2eWp_HiHtwYubX64axDsHqLl9HMTfNpEoWpqwiiresbrTXVUpJyo7DEFJnA4E1QelyVhpeUlIbQDQ0MU4b4FGvklawsuYKMdJw3BE-n3Nq2lbCqarX6UvV-r1UrMIZegCjuqJcTdWjqn6O2rdhVVuntVu51fbQCMRgwxilE_0ERYRxj1qH4hKqmtrbRRhyaaiebX4Gg6NcQfbuiL1t0awgkaJ__fM6XVsmtaeReVfbixD5HnPrI-wPbKIKh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701478227</pqid></control><display><type>article</type><title>CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>NOBLE, Scott C ; MUNDIM, Bruno C ; NAKANO, Hiroyuki ; KROLIK, Julian H ; CAMPANELLI, Manuela ; ZLOCHOWER, Yosef ; YUNES, Nicolás</creator><creatorcontrib>NOBLE, Scott C ; MUNDIM, Bruno C ; NAKANO, Hiroyuki ; KROLIK, Julian H ; CAMPANELLI, Manuela ; ZLOCHOWER, Yosef ; YUNES, Nicolás</creatorcontrib><description>We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/755/1/51</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP</publisher><subject>ACCRETION DISKS ; APPROXIMATIONS ; ASTRONOMY ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; BLACK HOLES ; Black holes (astronomy) ; COMPRESSION ; COMPUTERIZED SIMULATION ; DENSITY ; Earth, ocean, space ; Evolution ; Exact sciences and technology ; EXTRAPOLATION ; GALAXY NUCLEI ; Gravitation ; GRAVITATIONAL RADIATION ; Inflow ; LUMINOSITY ; MAGNETOHYDRODYNAMICS ; MODULATION ; Orbitals ; PERIODICITY ; REST MASS ; Separation ; SPACE-TIME ; STAR EVOLUTION ; TORQUE</subject><ispartof>The Astrophysical journal, 2012-08, Vol.755 (1), p.1-24</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-6feee5eaa4bdc2a251f9f2d9b38cbf8b54bf45d59f7cf4652e13b7bb8c0742d93</citedby><cites>FETCH-LOGICAL-c415t-6feee5eaa4bdc2a251f9f2d9b38cbf8b54bf45d59f7cf4652e13b7bb8c0742d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26818561$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22039152$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>NOBLE, Scott C</creatorcontrib><creatorcontrib>MUNDIM, Bruno C</creatorcontrib><creatorcontrib>NAKANO, Hiroyuki</creatorcontrib><creatorcontrib>KROLIK, Julian H</creatorcontrib><creatorcontrib>CAMPANELLI, Manuela</creatorcontrib><creatorcontrib>ZLOCHOWER, Yosef</creatorcontrib><creatorcontrib>YUNES, Nicolás</creatorcontrib><title>CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES</title><title>The Astrophysical journal</title><description>We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.</description><subject>ACCRETION DISKS</subject><subject>APPROXIMATIONS</subject><subject>ASTRONOMY</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>BLACK HOLES</subject><subject>Black holes (astronomy)</subject><subject>COMPRESSION</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DENSITY</subject><subject>Earth, ocean, space</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>EXTRAPOLATION</subject><subject>GALAXY NUCLEI</subject><subject>Gravitation</subject><subject>GRAVITATIONAL RADIATION</subject><subject>Inflow</subject><subject>LUMINOSITY</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MODULATION</subject><subject>Orbitals</subject><subject>PERIODICITY</subject><subject>REST MASS</subject><subject>Separation</subject><subject>SPACE-TIME</subject><subject>STAR EVOLUTION</subject><subject>TORQUE</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkcFLwzAYxYMoOKf_gKeCCF7qkjRp0mPX1a3YtdJt4E4hzRKsbOtsuoP_vS0bO3v5Hh_83ju8B8Ajgq8Icj6CEBLX99jniFE6QiOKrsAAUY-7xKPsGgwuwC24s_a7f3EQDEAWJUW0mo-TLCzWzjycZvEyn60nRT5ZZ-E8iZwwiop4meSZk2TLvDuLj6QI0ySbOmfXOA2jd2eWp_HiHtwYubX64axDsHqLl9HMTfNpEoWpqwiiresbrTXVUpJyo7DEFJnA4E1QelyVhpeUlIbQDQ0MU4b4FGvklawsuYKMdJw3BE-n3Nq2lbCqarX6UvV-r1UrMIZegCjuqJcTdWjqn6O2rdhVVuntVu51fbQCMRgwxilE_0ERYRxj1qH4hKqmtrbRRhyaaiebX4Gg6NcQfbuiL1t0awgkaJ__fM6XVsmtaeReVfbixD5HnPrI-wPbKIKh</recordid><startdate>20120810</startdate><enddate>20120810</enddate><creator>NOBLE, Scott C</creator><creator>MUNDIM, Bruno C</creator><creator>NAKANO, Hiroyuki</creator><creator>KROLIK, Julian H</creator><creator>CAMPANELLI, Manuela</creator><creator>ZLOCHOWER, Yosef</creator><creator>YUNES, Nicolás</creator><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20120810</creationdate><title>CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES</title><author>NOBLE, Scott C ; MUNDIM, Bruno C ; NAKANO, Hiroyuki ; KROLIK, Julian H ; CAMPANELLI, Manuela ; ZLOCHOWER, Yosef ; YUNES, Nicolás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-6feee5eaa4bdc2a251f9f2d9b38cbf8b54bf45d59f7cf4652e13b7bb8c0742d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ACCRETION DISKS</topic><topic>APPROXIMATIONS</topic><topic>ASTRONOMY</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>BLACK HOLES</topic><topic>Black holes (astronomy)</topic><topic>COMPRESSION</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DENSITY</topic><topic>Earth, ocean, space</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>EXTRAPOLATION</topic><topic>GALAXY NUCLEI</topic><topic>Gravitation</topic><topic>GRAVITATIONAL RADIATION</topic><topic>Inflow</topic><topic>LUMINOSITY</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MODULATION</topic><topic>Orbitals</topic><topic>PERIODICITY</topic><topic>REST MASS</topic><topic>Separation</topic><topic>SPACE-TIME</topic><topic>STAR EVOLUTION</topic><topic>TORQUE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NOBLE, Scott C</creatorcontrib><creatorcontrib>MUNDIM, Bruno C</creatorcontrib><creatorcontrib>NAKANO, Hiroyuki</creatorcontrib><creatorcontrib>KROLIK, Julian H</creatorcontrib><creatorcontrib>CAMPANELLI, Manuela</creatorcontrib><creatorcontrib>ZLOCHOWER, Yosef</creatorcontrib><creatorcontrib>YUNES, Nicolás</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NOBLE, Scott C</au><au>MUNDIM, Bruno C</au><au>NAKANO, Hiroyuki</au><au>KROLIK, Julian H</au><au>CAMPANELLI, Manuela</au><au>ZLOCHOWER, Yosef</au><au>YUNES, Nicolás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES</atitle><jtitle>The Astrophysical journal</jtitle><date>2012-08-10</date><risdate>2012</risdate><volume>755</volume><issue>1</issue><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We have simulated the magnetohydrodynamic evolution of a circumbinary disk surrounding an equal-mass binary comprising two non-spinning black holes during the period in which the disk inflow time is comparable to the binary evolution time due to gravitational radiation. Both the changing spacetime and the binary orbital evolution are described by an innovative technique utilizing high-order post-Newtonian approximations. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results: a gap of roughly two binary separation radii is cleared, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; the accretion rate is roughly half its value at large radius. During inspiral, the inner edge of the disk initially moves inward in coordination with the shrinking binary, but-as the orbital evolution accelerates-the inward motion of the disk edge falls behind the rate of binary compression. In this stage, the binary torque falls substantially, but the accretion rate decreases by only 10%-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes could be very luminous at this stage of their evolution. Inner disk heating is modulated at a beat frequency comparable to the binary orbital frequency. However, a disk with sufficient surface density to be luminous may be optically thick, suppressing periodic modulation of the luminosity.</abstract><cop>Bristol</cop><pub>IOP</pub><doi>10.1088/0004-637X/755/1/51</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2012-08, Vol.755 (1), p.1-24 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22039152 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | ACCRETION DISKS APPROXIMATIONS ASTRONOMY ASTROPHYSICS ASTROPHYSICS, COSMOLOGY AND ASTRONOMY BLACK HOLES Black holes (astronomy) COMPRESSION COMPUTERIZED SIMULATION DENSITY Earth, ocean, space Evolution Exact sciences and technology EXTRAPOLATION GALAXY NUCLEI Gravitation GRAVITATIONAL RADIATION Inflow LUMINOSITY MAGNETOHYDRODYNAMICS MODULATION Orbitals PERIODICITY REST MASS Separation SPACE-TIME STAR EVOLUTION TORQUE |
title | CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CIRCUMBINARY%20MAGNETOHYDRODYNAMIC%20ACCRETION%20INTO%20INSPIRALING%20BINARY%20BLACK%20HOLES&rft.jtitle=The%20Astrophysical%20journal&rft.au=NOBLE,%20Scott%20C&rft.date=2012-08-10&rft.volume=755&rft.issue=1&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/755/1/51&rft_dat=%3Cproquest_osti_%3E1709778501%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701478227&rft_id=info:pmid/&rfr_iscdi=true |