A METHOD TO CONSTRAIN THE SIZE OF THE PROTOSOLAR NEBULA

Observations indicate that the gaseous circumstellar disks around young stars vary significantly in size, ranging from tens to thousands of AU. Models of planet formation depend critically upon the properties of these primordial disks, yet in general it is impossible to connect an existing planetary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2012-04, Vol.143 (4), p.1-10
Hauptverfasser: Kretke, K A, Levison, H F, Buie, M W, Morbidelli, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 4
container_start_page 1
container_title The Astronomical journal
container_volume 143
creator Kretke, K A
Levison, H F
Buie, M W
Morbidelli, A
description Observations indicate that the gaseous circumstellar disks around young stars vary significantly in size, ranging from tens to thousands of AU. Models of planet formation depend critically upon the properties of these primordial disks, yet in general it is impossible to connect an existing planetary system with an observed disk. We present a method by which we can constrain the size of our own protosolar nebula using the properties of the small body reservoirs in the solar system. In standard planet formation theory, after Jupiter and Saturn formed they scattered a significant number of remnant planetesimals into highly eccentric orbits. In this paper, we show that if there had been a massive, extended protoplanetary disk at that time, then the disk would have excited Kozai oscillations in some of the scattered objects, driving them into high-inclination (i [> ~] 50[degrees]), low-eccentricity orbits (q [> ~] 30 AU). The dissipation of the gaseous disk would strand a subset of objects in these high-inclination orbits; orbits that are stable on Gyr timescales. To date, surveys have not detected any Kuiper-belt objects with orbits consistent with this dynamical mechanism. Using these non-detections by the Deep Ecliptic Survey and the Palomar Distant Solar System Survey we are able to rule out an extended gaseous protoplanetary disk (R sub(D) [> ~] 80 AU) in our solar system at the time of Jupiter's formation. Future deep all sky surveys such as the Large Synoptic Survey Telescope will allow us to further constrain the size of the protoplanetary disk.
doi_str_mv 10.1088/0004-6256/143/4/91
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22034659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669895156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-12366f75c84cda97d601f69faeb3f5d64eefa0e3de82bca594bbfe714225cb8e3</originalsourceid><addsrcrecordid>eNqN0c9PwjAUwPHGaCKi_4CnJV70MHn9ufY4cQjJZAbGxUvTlS7MAMN1mPjfO8Rw9tSX5pOXl3wRusXwiEHKAQCwUBAuBpjRARsofIZ6mFMZUinxOeqdwCW68v4DAGMJrIeiOHhN8nH2HORZMMym83wWT6ZBPk6C-eQ9CbLR7_w2y_JsnqXxLJgmT4s0vkYXpVl7d_P39tFilOTDcZhmL5NhnIaWRrwNMaFClBG3ktmlUdFSAC6FKo0raMmXgjlXGnB06SQprOGKFUXpIswI4baQjvbR3XFv7dtKe1u1zq5svd0622pCgDLBVacejmpl1nrXVBvTfOvaVHocp_rwByBUJBj5wp29P9pdU3_unW_1pvLWrddm6-q911gIJRXHXPyHAgMOkneUHKltau8bV57OwKAPifShgD4U0F0izbTC9AdUGHv3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660405085</pqid></control><display><type>article</type><title>A METHOD TO CONSTRAIN THE SIZE OF THE PROTOSOLAR NEBULA</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><creator>Kretke, K A ; Levison, H F ; Buie, M W ; Morbidelli, A</creator><creatorcontrib>Kretke, K A ; Levison, H F ; Buie, M W ; Morbidelli, A</creatorcontrib><description>Observations indicate that the gaseous circumstellar disks around young stars vary significantly in size, ranging from tens to thousands of AU. Models of planet formation depend critically upon the properties of these primordial disks, yet in general it is impossible to connect an existing planetary system with an observed disk. We present a method by which we can constrain the size of our own protosolar nebula using the properties of the small body reservoirs in the solar system. In standard planet formation theory, after Jupiter and Saturn formed they scattered a significant number of remnant planetesimals into highly eccentric orbits. In this paper, we show that if there had been a massive, extended protoplanetary disk at that time, then the disk would have excited Kozai oscillations in some of the scattered objects, driving them into high-inclination (i [&gt; ~] 50[degrees]), low-eccentricity orbits (q [&gt; ~] 30 AU). The dissipation of the gaseous disk would strand a subset of objects in these high-inclination orbits; orbits that are stable on Gyr timescales. To date, surveys have not detected any Kuiper-belt objects with orbits consistent with this dynamical mechanism. Using these non-detections by the Deep Ecliptic Survey and the Palomar Distant Solar System Survey we are able to rule out an extended gaseous protoplanetary disk (R sub(D) [&gt; ~] 80 AU) in our solar system at the time of Jupiter's formation. Future deep all sky surveys such as the Large Synoptic Survey Telescope will allow us to further constrain the size of the protoplanetary disk.</description><identifier>ISSN: 0004-6256</identifier><identifier>ISSN: 1538-3881</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.1088/0004-6256/143/4/91</identifier><language>eng</language><publisher>United States: American Astronomical Society</publisher><subject>ASTRONOMY ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; DETECTION ; Disks ; INCLINATION ; Jupiter ; JUPITER PLANET ; NEBULAE ; ORBITS ; OSCILLATIONS ; Planet formation ; Planetary systems ; PROTOPLANETS ; SATURN PLANET ; SOLAR SYSTEM ; SOLAR SYSTEM EVOLUTION ; Surveys ; TELESCOPES</subject><ispartof>The Astronomical journal, 2012-04, Vol.143 (4), p.1-10</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-12366f75c84cda97d601f69faeb3f5d64eefa0e3de82bca594bbfe714225cb8e3</citedby><cites>FETCH-LOGICAL-c375t-12366f75c84cda97d601f69faeb3f5d64eefa0e3de82bca594bbfe714225cb8e3</cites><orcidid>0000-0001-8476-7687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00697642$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22034659$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kretke, K A</creatorcontrib><creatorcontrib>Levison, H F</creatorcontrib><creatorcontrib>Buie, M W</creatorcontrib><creatorcontrib>Morbidelli, A</creatorcontrib><title>A METHOD TO CONSTRAIN THE SIZE OF THE PROTOSOLAR NEBULA</title><title>The Astronomical journal</title><description>Observations indicate that the gaseous circumstellar disks around young stars vary significantly in size, ranging from tens to thousands of AU. Models of planet formation depend critically upon the properties of these primordial disks, yet in general it is impossible to connect an existing planetary system with an observed disk. We present a method by which we can constrain the size of our own protosolar nebula using the properties of the small body reservoirs in the solar system. In standard planet formation theory, after Jupiter and Saturn formed they scattered a significant number of remnant planetesimals into highly eccentric orbits. In this paper, we show that if there had been a massive, extended protoplanetary disk at that time, then the disk would have excited Kozai oscillations in some of the scattered objects, driving them into high-inclination (i [&gt; ~] 50[degrees]), low-eccentricity orbits (q [&gt; ~] 30 AU). The dissipation of the gaseous disk would strand a subset of objects in these high-inclination orbits; orbits that are stable on Gyr timescales. To date, surveys have not detected any Kuiper-belt objects with orbits consistent with this dynamical mechanism. Using these non-detections by the Deep Ecliptic Survey and the Palomar Distant Solar System Survey we are able to rule out an extended gaseous protoplanetary disk (R sub(D) [&gt; ~] 80 AU) in our solar system at the time of Jupiter's formation. Future deep all sky surveys such as the Large Synoptic Survey Telescope will allow us to further constrain the size of the protoplanetary disk.</description><subject>ASTRONOMY</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>DETECTION</subject><subject>Disks</subject><subject>INCLINATION</subject><subject>Jupiter</subject><subject>JUPITER PLANET</subject><subject>NEBULAE</subject><subject>ORBITS</subject><subject>OSCILLATIONS</subject><subject>Planet formation</subject><subject>Planetary systems</subject><subject>PROTOPLANETS</subject><subject>SATURN PLANET</subject><subject>SOLAR SYSTEM</subject><subject>SOLAR SYSTEM EVOLUTION</subject><subject>Surveys</subject><subject>TELESCOPES</subject><issn>0004-6256</issn><issn>1538-3881</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqN0c9PwjAUwPHGaCKi_4CnJV70MHn9ufY4cQjJZAbGxUvTlS7MAMN1mPjfO8Rw9tSX5pOXl3wRusXwiEHKAQCwUBAuBpjRARsofIZ6mFMZUinxOeqdwCW68v4DAGMJrIeiOHhN8nH2HORZMMym83wWT6ZBPk6C-eQ9CbLR7_w2y_JsnqXxLJgmT4s0vkYXpVl7d_P39tFilOTDcZhmL5NhnIaWRrwNMaFClBG3ktmlUdFSAC6FKo0raMmXgjlXGnB06SQprOGKFUXpIswI4baQjvbR3XFv7dtKe1u1zq5svd0622pCgDLBVacejmpl1nrXVBvTfOvaVHocp_rwByBUJBj5wp29P9pdU3_unW_1pvLWrddm6-q911gIJRXHXPyHAgMOkneUHKltau8bV57OwKAPifShgD4U0F0izbTC9AdUGHv3</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Kretke, K A</creator><creator>Levison, H F</creator><creator>Buie, M W</creator><creator>Morbidelli, A</creator><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8476-7687</orcidid></search><sort><creationdate>20120401</creationdate><title>A METHOD TO CONSTRAIN THE SIZE OF THE PROTOSOLAR NEBULA</title><author>Kretke, K A ; Levison, H F ; Buie, M W ; Morbidelli, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-12366f75c84cda97d601f69faeb3f5d64eefa0e3de82bca594bbfe714225cb8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ASTRONOMY</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>DETECTION</topic><topic>Disks</topic><topic>INCLINATION</topic><topic>Jupiter</topic><topic>JUPITER PLANET</topic><topic>NEBULAE</topic><topic>ORBITS</topic><topic>OSCILLATIONS</topic><topic>Planet formation</topic><topic>Planetary systems</topic><topic>PROTOPLANETS</topic><topic>SATURN PLANET</topic><topic>SOLAR SYSTEM</topic><topic>SOLAR SYSTEM EVOLUTION</topic><topic>Surveys</topic><topic>TELESCOPES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kretke, K A</creatorcontrib><creatorcontrib>Levison, H F</creatorcontrib><creatorcontrib>Buie, M W</creatorcontrib><creatorcontrib>Morbidelli, A</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kretke, K A</au><au>Levison, H F</au><au>Buie, M W</au><au>Morbidelli, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A METHOD TO CONSTRAIN THE SIZE OF THE PROTOSOLAR NEBULA</atitle><jtitle>The Astronomical journal</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>143</volume><issue>4</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0004-6256</issn><issn>1538-3881</issn><eissn>1538-3881</eissn><abstract>Observations indicate that the gaseous circumstellar disks around young stars vary significantly in size, ranging from tens to thousands of AU. Models of planet formation depend critically upon the properties of these primordial disks, yet in general it is impossible to connect an existing planetary system with an observed disk. We present a method by which we can constrain the size of our own protosolar nebula using the properties of the small body reservoirs in the solar system. In standard planet formation theory, after Jupiter and Saturn formed they scattered a significant number of remnant planetesimals into highly eccentric orbits. In this paper, we show that if there had been a massive, extended protoplanetary disk at that time, then the disk would have excited Kozai oscillations in some of the scattered objects, driving them into high-inclination (i [&gt; ~] 50[degrees]), low-eccentricity orbits (q [&gt; ~] 30 AU). The dissipation of the gaseous disk would strand a subset of objects in these high-inclination orbits; orbits that are stable on Gyr timescales. To date, surveys have not detected any Kuiper-belt objects with orbits consistent with this dynamical mechanism. Using these non-detections by the Deep Ecliptic Survey and the Palomar Distant Solar System Survey we are able to rule out an extended gaseous protoplanetary disk (R sub(D) [&gt; ~] 80 AU) in our solar system at the time of Jupiter's formation. Future deep all sky surveys such as the Large Synoptic Survey Telescope will allow us to further constrain the size of the protoplanetary disk.</abstract><cop>United States</cop><pub>American Astronomical Society</pub><doi>10.1088/0004-6256/143/4/91</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8476-7687</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-6256
ispartof The Astronomical journal, 2012-04, Vol.143 (4), p.1-10
issn 0004-6256
1538-3881
1538-3881
language eng
recordid cdi_osti_scitechconnect_22034659
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection
subjects ASTRONOMY
ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
DETECTION
Disks
INCLINATION
Jupiter
JUPITER PLANET
NEBULAE
ORBITS
OSCILLATIONS
Planet formation
Planetary systems
PROTOPLANETS
SATURN PLANET
SOLAR SYSTEM
SOLAR SYSTEM EVOLUTION
Surveys
TELESCOPES
title A METHOD TO CONSTRAIN THE SIZE OF THE PROTOSOLAR NEBULA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20METHOD%20TO%20CONSTRAIN%20THE%20SIZE%20OF%20THE%20PROTOSOLAR%20NEBULA&rft.jtitle=The%20Astronomical%20journal&rft.au=Kretke,%20K%20A&rft.date=2012-04-01&rft.volume=143&rft.issue=4&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.1088/0004-6256/143/4/91&rft_dat=%3Cproquest_osti_%3E1669895156%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660405085&rft_id=info:pmid/&rfr_iscdi=true