TURBULENT CONVECTION MODEL IN THE OVERSHOOTING REGION. II. THEORETICAL ANALYSIS
Turbulent convection models (TCMs) are thought to be good tools to deal with the convective overshooting in the stellar interior. However, they are too complex to be applied to calculations of stellar structure and evolution. In order to understand the physical processes of the convective overshooti...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2012-05, Vol.750 (1), p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | The Astrophysical journal |
container_volume | 750 |
creator | ZHANG, Q. S LI, Y |
description | Turbulent convection models (TCMs) are thought to be good tools to deal with the convective overshooting in the stellar interior. However, they are too complex to be applied to calculations of stellar structure and evolution. In order to understand the physical processes of the convective overshooting and to simplify the application of TCMs, a semi-analytic solution is necessary. We obtain the approximate solution and asymptotic solution of the TCM in the overshooting region, and find some important properties of the convective overshooting. (1) The overshooting region can be partitioned into three parts: a thin region just outside the convective boundary with high efficiency of turbulent heat transfer, a power-law dissipation region of turbulent kinetic energy in the middle, and a thermal dissipation area with rapidly decreasing turbulent kinetic energy. The decaying indices of the turbulent correlations k, u sub(r)'T', and T'T' are only determined by the parameters of the TCM, and there is an equilibrium value of the anisotropic degree omega . (2) The overshooting length of the turbulent heat flux u sub(r)'T'is about 1H sub(k) (H sub(k) = |dr/dln k|). (3) The value of the turbulent kinetic energy at the convective boundary k sub(C) can be estimated by a method called the maximum of diffusion. Turbulent correlations in the overshooting region can be estimated by using k sub(C) and exponentially decreasing functions with the decaying indices. |
doi_str_mv | 10.1088/0004-637x/750/1/11 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22034635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1680458922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-2ed7c73d04f66f612b89b23f01fd5c27ac33ca95f4a58bef1d3b5f74fa01fda03</originalsourceid><addsrcrecordid>eNqN0c9LwzAUB_AgCs7pP-CpIIKXrvnRNOlxzroVagNbN_QUsizBSrfOpgP9723Z9Ozp8Xif9w7vC8AtgiMEOQ8ghKEfEfYVMAoDFCB0BgaIEu6HhLJzMPgFr5fgyrmPvsVxPACiWM4fl1mSF95E5KtkUqQi917EU5J5ae4Vs8QTq2S-mAlRpPnUmyfTDoy8NB31QzFPinQyzrxxPs7eFuniGlxYVTlzc6pDsHxOisnMz8S0h76mBLY-NhumGdnA0EaRjRBe83iNiYXIbqjGTGlCtIqpDRXla2PRhqypZaFVvVCQDMHd8W7t2lI6XbZGv-t6tzO6lRhDEkaEdurhqPZN_XkwrpXb0mlTVWpn6oOTKOKUcYYj8h8KQ8pjjDuKj1Q3tXONsXLflFvVfEsEZR-H7N8r-2_LLg6JJELd0v3pvnJaVbZRO126v01MOUYQx-QHjEuCRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680458922</pqid></control><display><type>article</type><title>TURBULENT CONVECTION MODEL IN THE OVERSHOOTING REGION. II. THEORETICAL ANALYSIS</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>ZHANG, Q. S ; LI, Y</creator><creatorcontrib>ZHANG, Q. S ; LI, Y</creatorcontrib><description>Turbulent convection models (TCMs) are thought to be good tools to deal with the convective overshooting in the stellar interior. However, they are too complex to be applied to calculations of stellar structure and evolution. In order to understand the physical processes of the convective overshooting and to simplify the application of TCMs, a semi-analytic solution is necessary. We obtain the approximate solution and asymptotic solution of the TCM in the overshooting region, and find some important properties of the convective overshooting. (1) The overshooting region can be partitioned into three parts: a thin region just outside the convective boundary with high efficiency of turbulent heat transfer, a power-law dissipation region of turbulent kinetic energy in the middle, and a thermal dissipation area with rapidly decreasing turbulent kinetic energy. The decaying indices of the turbulent correlations k, u sub(r)'T', and T'T' are only determined by the parameters of the TCM, and there is an equilibrium value of the anisotropic degree omega . (2) The overshooting length of the turbulent heat flux u sub(r)'T'is about 1H sub(k) (H sub(k) = |dr/dln k|). (3) The value of the turbulent kinetic energy at the convective boundary k sub(C) can be estimated by a method called the maximum of diffusion. Turbulent correlations in the overshooting region can be estimated by using k sub(C) and exponentially decreasing functions with the decaying indices.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637x/750/1/11</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP</publisher><subject>ANALYTICAL SOLUTION ; ANISOTROPY ; APPROXIMATIONS ; Astronomy ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; ASYMPTOTIC SOLUTIONS ; Boundaries ; Computational fluid dynamics ; CONVECTION ; Correlation ; CORRELATIONS ; Decay ; DIFFUSION ; Dissipation ; Earth, ocean, space ; Exact sciences and technology ; HEAT FLUX ; KINETIC ENERGY ; Mathematical models ; STAR EVOLUTION ; STARS ; TURBULENCE</subject><ispartof>The Astrophysical journal, 2012-05, Vol.750 (1), p.1-9</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-2ed7c73d04f66f612b89b23f01fd5c27ac33ca95f4a58bef1d3b5f74fa01fda03</citedby><cites>FETCH-LOGICAL-c530t-2ed7c73d04f66f612b89b23f01fd5c27ac33ca95f4a58bef1d3b5f74fa01fda03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25821029$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22034635$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>ZHANG, Q. S</creatorcontrib><creatorcontrib>LI, Y</creatorcontrib><title>TURBULENT CONVECTION MODEL IN THE OVERSHOOTING REGION. II. THEORETICAL ANALYSIS</title><title>The Astrophysical journal</title><description>Turbulent convection models (TCMs) are thought to be good tools to deal with the convective overshooting in the stellar interior. However, they are too complex to be applied to calculations of stellar structure and evolution. In order to understand the physical processes of the convective overshooting and to simplify the application of TCMs, a semi-analytic solution is necessary. We obtain the approximate solution and asymptotic solution of the TCM in the overshooting region, and find some important properties of the convective overshooting. (1) The overshooting region can be partitioned into three parts: a thin region just outside the convective boundary with high efficiency of turbulent heat transfer, a power-law dissipation region of turbulent kinetic energy in the middle, and a thermal dissipation area with rapidly decreasing turbulent kinetic energy. The decaying indices of the turbulent correlations k, u sub(r)'T', and T'T' are only determined by the parameters of the TCM, and there is an equilibrium value of the anisotropic degree omega . (2) The overshooting length of the turbulent heat flux u sub(r)'T'is about 1H sub(k) (H sub(k) = |dr/dln k|). (3) The value of the turbulent kinetic energy at the convective boundary k sub(C) can be estimated by a method called the maximum of diffusion. Turbulent correlations in the overshooting region can be estimated by using k sub(C) and exponentially decreasing functions with the decaying indices.</description><subject>ANALYTICAL SOLUTION</subject><subject>ANISOTROPY</subject><subject>APPROXIMATIONS</subject><subject>Astronomy</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>Boundaries</subject><subject>Computational fluid dynamics</subject><subject>CONVECTION</subject><subject>Correlation</subject><subject>CORRELATIONS</subject><subject>Decay</subject><subject>DIFFUSION</subject><subject>Dissipation</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>HEAT FLUX</subject><subject>KINETIC ENERGY</subject><subject>Mathematical models</subject><subject>STAR EVOLUTION</subject><subject>STARS</subject><subject>TURBULENCE</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqN0c9LwzAUB_AgCs7pP-CpIIKXrvnRNOlxzroVagNbN_QUsizBSrfOpgP9723Z9Ozp8Xif9w7vC8AtgiMEOQ8ghKEfEfYVMAoDFCB0BgaIEu6HhLJzMPgFr5fgyrmPvsVxPACiWM4fl1mSF95E5KtkUqQi917EU5J5ae4Vs8QTq2S-mAlRpPnUmyfTDoy8NB31QzFPinQyzrxxPs7eFuniGlxYVTlzc6pDsHxOisnMz8S0h76mBLY-NhumGdnA0EaRjRBe83iNiYXIbqjGTGlCtIqpDRXla2PRhqypZaFVvVCQDMHd8W7t2lI6XbZGv-t6tzO6lRhDEkaEdurhqPZN_XkwrpXb0mlTVWpn6oOTKOKUcYYj8h8KQ8pjjDuKj1Q3tXONsXLflFvVfEsEZR-H7N8r-2_LLg6JJELd0v3pvnJaVbZRO126v01MOUYQx-QHjEuCRA</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>ZHANG, Q. S</creator><creator>LI, Y</creator><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20120501</creationdate><title>TURBULENT CONVECTION MODEL IN THE OVERSHOOTING REGION. II. THEORETICAL ANALYSIS</title><author>ZHANG, Q. S ; LI, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-2ed7c73d04f66f612b89b23f01fd5c27ac33ca95f4a58bef1d3b5f74fa01fda03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ANALYTICAL SOLUTION</topic><topic>ANISOTROPY</topic><topic>APPROXIMATIONS</topic><topic>Astronomy</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>Boundaries</topic><topic>Computational fluid dynamics</topic><topic>CONVECTION</topic><topic>Correlation</topic><topic>CORRELATIONS</topic><topic>Decay</topic><topic>DIFFUSION</topic><topic>Dissipation</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>HEAT FLUX</topic><topic>KINETIC ENERGY</topic><topic>Mathematical models</topic><topic>STAR EVOLUTION</topic><topic>STARS</topic><topic>TURBULENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Q. S</creatorcontrib><creatorcontrib>LI, Y</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Q. S</au><au>LI, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TURBULENT CONVECTION MODEL IN THE OVERSHOOTING REGION. II. THEORETICAL ANALYSIS</atitle><jtitle>The Astrophysical journal</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>750</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>Turbulent convection models (TCMs) are thought to be good tools to deal with the convective overshooting in the stellar interior. However, they are too complex to be applied to calculations of stellar structure and evolution. In order to understand the physical processes of the convective overshooting and to simplify the application of TCMs, a semi-analytic solution is necessary. We obtain the approximate solution and asymptotic solution of the TCM in the overshooting region, and find some important properties of the convective overshooting. (1) The overshooting region can be partitioned into three parts: a thin region just outside the convective boundary with high efficiency of turbulent heat transfer, a power-law dissipation region of turbulent kinetic energy in the middle, and a thermal dissipation area with rapidly decreasing turbulent kinetic energy. The decaying indices of the turbulent correlations k, u sub(r)'T', and T'T' are only determined by the parameters of the TCM, and there is an equilibrium value of the anisotropic degree omega . (2) The overshooting length of the turbulent heat flux u sub(r)'T'is about 1H sub(k) (H sub(k) = |dr/dln k|). (3) The value of the turbulent kinetic energy at the convective boundary k sub(C) can be estimated by a method called the maximum of diffusion. Turbulent correlations in the overshooting region can be estimated by using k sub(C) and exponentially decreasing functions with the decaying indices.</abstract><cop>Bristol</cop><pub>IOP</pub><doi>10.1088/0004-637x/750/1/11</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2012-05, Vol.750 (1), p.1-9 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_22034635 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | ANALYTICAL SOLUTION ANISOTROPY APPROXIMATIONS Astronomy ASTROPHYSICS ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ASYMPTOTIC SOLUTIONS Boundaries Computational fluid dynamics CONVECTION Correlation CORRELATIONS Decay DIFFUSION Dissipation Earth, ocean, space Exact sciences and technology HEAT FLUX KINETIC ENERGY Mathematical models STAR EVOLUTION STARS TURBULENCE |
title | TURBULENT CONVECTION MODEL IN THE OVERSHOOTING REGION. II. THEORETICAL ANALYSIS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TURBULENT%20CONVECTION%20MODEL%20IN%20THE%20OVERSHOOTING%20REGION.%20II.%20THEORETICAL%20ANALYSIS&rft.jtitle=The%20Astrophysical%20journal&rft.au=ZHANG,%20Q.%20S&rft.date=2012-05-01&rft.volume=750&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637x/750/1/11&rft_dat=%3Cproquest_osti_%3E1680458922%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680458922&rft_id=info:pmid/&rfr_iscdi=true |