Energy distribution of recoil atoms and formation of radiation defects in silicon carbide films under proton irradiation

Proton scattering in a silicon carbide film has been numerically simulated. Distribution histograms of the energy imparted to recoil atoms are obtained. Two energy ranges are considered when analyzing the histograms. In the first range of “low” energies, individual Frenkel pairs with closely spaced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2011-02, Vol.45 (2), p.141-144
Hauptverfasser: Ivanov, A. M., Kozlovski, V. V., Strokan, N. B., Lebedev, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 2
container_start_page 141
container_title Semiconductors (Woodbury, N.Y.)
container_volume 45
creator Ivanov, A. M.
Kozlovski, V. V.
Strokan, N. B.
Lebedev, A. A.
description Proton scattering in a silicon carbide film has been numerically simulated. Distribution histograms of the energy imparted to recoil atoms are obtained. Two energy ranges are considered when analyzing the histograms. In the first range of “low” energies, individual Frenkel pairs with closely spaced components are created. In the second range, recoil atoms have energies sufficient for generating a cascade of displacements. This gives rise to microscopic regions with high density of vacancies and vacancy complexes of various kinds.
doi_str_mv 10.1134/S1063782611020096
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22004882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A360680016</galeid><sourcerecordid>A360680016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-bd067633d04491b346bb6251f4d7bfebae4482d763c957b0cc03338b59439ddf3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWKs_wF3A9dRkksnMLEupDyi4UNchz5oyTUqSgv33ZhjpRpAs8jjnC_fcC8A9RguMCX18x4iRtqsZxqhGqGcXYIZRjypG2_5yPDNSjfo1uElphxDGXUNn4HvtTdyeoHYpRyeP2QUPg4XRqOAGKHLYJyi8hjbEvTirQrvpoo01KifoPExucKo8KRGl0wZaNxT26LWJ8BBDLpKLZ_IWXFkxJHP3u8_B59P6Y_VSbd6eX1fLTaVI0-RKasRaRohGlPZYEsqkZHWDLdWttEYKQ2lX62JRfdNKpBQihHSy6SnptbZkDh6mf0PKjiflslFfpUxfyuZ1aRXturq4FpNrKwbDnbchR6HK0mY_hjIljOFLwhDrSu9YAfAEqBhSisbyQ3R7EU8cIz5OhP-ZSGHqiUnF67cm8l04Rl_S_wP9AChejmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energy distribution of recoil atoms and formation of radiation defects in silicon carbide films under proton irradiation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ivanov, A. M. ; Kozlovski, V. V. ; Strokan, N. B. ; Lebedev, A. A.</creator><creatorcontrib>Ivanov, A. M. ; Kozlovski, V. V. ; Strokan, N. B. ; Lebedev, A. A.</creatorcontrib><description>Proton scattering in a silicon carbide film has been numerically simulated. Distribution histograms of the energy imparted to recoil atoms are obtained. Two energy ranges are considered when analyzing the histograms. In the first range of “low” energies, individual Frenkel pairs with closely spaced components are created. In the second range, recoil atoms have energies sufficient for generating a cascade of displacements. This gives rise to microscopic regions with high density of vacancies and vacancy complexes of various kinds.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782611020096</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>DEFECTS ; Diffusion ; ENERGY RANGE ; ENERGY SPECTRA ; IRRADIATION ; Magnetic Materials ; Magnetism ; MATERIALS SCIENCE ; Nonelectronic Properties of Semiconductors (Atomic Structure ; Nuclear radiation ; Physics ; Physics and Astronomy ; PROTONS ; RECOILS ; SCATTERING ; Silicon ; Silicon carbide ; SILICON CARBIDES ; SIMULATION</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2011-02, Vol.45 (2), p.141-144</ispartof><rights>Pleiades Publishing, Ltd. 2011</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-bd067633d04491b346bb6251f4d7bfebae4482d763c957b0cc03338b59439ddf3</citedby><cites>FETCH-LOGICAL-c355t-bd067633d04491b346bb6251f4d7bfebae4482d763c957b0cc03338b59439ddf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782611020096$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782611020096$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41466,42535,51296</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22004882$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivanov, A. M.</creatorcontrib><creatorcontrib>Kozlovski, V. V.</creatorcontrib><creatorcontrib>Strokan, N. B.</creatorcontrib><creatorcontrib>Lebedev, A. A.</creatorcontrib><title>Energy distribution of recoil atoms and formation of radiation defects in silicon carbide films under proton irradiation</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>Proton scattering in a silicon carbide film has been numerically simulated. Distribution histograms of the energy imparted to recoil atoms are obtained. Two energy ranges are considered when analyzing the histograms. In the first range of “low” energies, individual Frenkel pairs with closely spaced components are created. In the second range, recoil atoms have energies sufficient for generating a cascade of displacements. This gives rise to microscopic regions with high density of vacancies and vacancy complexes of various kinds.</description><subject>DEFECTS</subject><subject>Diffusion</subject><subject>ENERGY RANGE</subject><subject>ENERGY SPECTRA</subject><subject>IRRADIATION</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>Nonelectronic Properties of Semiconductors (Atomic Structure</subject><subject>Nuclear radiation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PROTONS</subject><subject>RECOILS</subject><subject>SCATTERING</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>SILICON CARBIDES</subject><subject>SIMULATION</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhYMoWKs_wF3A9dRkksnMLEupDyi4UNchz5oyTUqSgv33ZhjpRpAs8jjnC_fcC8A9RguMCX18x4iRtqsZxqhGqGcXYIZRjypG2_5yPDNSjfo1uElphxDGXUNn4HvtTdyeoHYpRyeP2QUPg4XRqOAGKHLYJyi8hjbEvTirQrvpoo01KifoPExucKo8KRGl0wZaNxT26LWJ8BBDLpKLZ_IWXFkxJHP3u8_B59P6Y_VSbd6eX1fLTaVI0-RKasRaRohGlPZYEsqkZHWDLdWttEYKQ2lX62JRfdNKpBQihHSy6SnptbZkDh6mf0PKjiflslFfpUxfyuZ1aRXturq4FpNrKwbDnbchR6HK0mY_hjIljOFLwhDrSu9YAfAEqBhSisbyQ3R7EU8cIz5OhP-ZSGHqiUnF67cm8l04Rl_S_wP9AChejmg</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Ivanov, A. M.</creator><creator>Kozlovski, V. V.</creator><creator>Strokan, N. B.</creator><creator>Lebedev, A. A.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20110201</creationdate><title>Energy distribution of recoil atoms and formation of radiation defects in silicon carbide films under proton irradiation</title><author>Ivanov, A. M. ; Kozlovski, V. V. ; Strokan, N. B. ; Lebedev, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-bd067633d04491b346bb6251f4d7bfebae4482d763c957b0cc03338b59439ddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>DEFECTS</topic><topic>Diffusion</topic><topic>ENERGY RANGE</topic><topic>ENERGY SPECTRA</topic><topic>IRRADIATION</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>Nonelectronic Properties of Semiconductors (Atomic Structure</topic><topic>Nuclear radiation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PROTONS</topic><topic>RECOILS</topic><topic>SCATTERING</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>SILICON CARBIDES</topic><topic>SIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanov, A. M.</creatorcontrib><creatorcontrib>Kozlovski, V. V.</creatorcontrib><creatorcontrib>Strokan, N. B.</creatorcontrib><creatorcontrib>Lebedev, A. A.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanov, A. M.</au><au>Kozlovski, V. V.</au><au>Strokan, N. B.</au><au>Lebedev, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy distribution of recoil atoms and formation of radiation defects in silicon carbide films under proton irradiation</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>45</volume><issue>2</issue><spage>141</spage><epage>144</epage><pages>141-144</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>Proton scattering in a silicon carbide film has been numerically simulated. Distribution histograms of the energy imparted to recoil atoms are obtained. Two energy ranges are considered when analyzing the histograms. In the first range of “low” energies, individual Frenkel pairs with closely spaced components are created. In the second range, recoil atoms have energies sufficient for generating a cascade of displacements. This gives rise to microscopic regions with high density of vacancies and vacancy complexes of various kinds.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1063782611020096</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2011-02, Vol.45 (2), p.141-144
issn 1063-7826
1090-6479
language eng
recordid cdi_osti_scitechconnect_22004882
source SpringerLink Journals - AutoHoldings
subjects DEFECTS
Diffusion
ENERGY RANGE
ENERGY SPECTRA
IRRADIATION
Magnetic Materials
Magnetism
MATERIALS SCIENCE
Nonelectronic Properties of Semiconductors (Atomic Structure
Nuclear radiation
Physics
Physics and Astronomy
PROTONS
RECOILS
SCATTERING
Silicon
Silicon carbide
SILICON CARBIDES
SIMULATION
title Energy distribution of recoil atoms and formation of radiation defects in silicon carbide films under proton irradiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20distribution%20of%20recoil%20atoms%20and%20formation%20of%20radiation%20defects%20in%20silicon%20carbide%20films%20under%20proton%20irradiation&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Ivanov,%20A.%20M.&rft.date=2011-02-01&rft.volume=45&rft.issue=2&rft.spage=141&rft.epage=144&rft.pages=141-144&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782611020096&rft_dat=%3Cgale_osti_%3EA360680016%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A360680016&rfr_iscdi=true