A Pelvic Phantom for Modeling Internal Organ Motions

Abstract A pelvic phantom was developed for use in testing image-guided radiation therapy (IGRT) and adaptive applications in radiation therapy (ART) with simulating the anterior-posterior internal organ motions during prostate radiotherapy. Measurements could be done with an ionization chamber (IC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical dosimetry : official journal of the American Association of Medical Dosimetrists 2011, Vol.36 (3), p.250-254
Hauptverfasser: Kovács, Péter, M.Sc, Sebestyén, Zsolt, M.Sc, Farkas, Róbert, M.D, Bellyei, Szabolcs, M.D., Ph.D, Szigeti, András, M.D., Ph.D, Liposits, Gábor, M.D, Hideghéty, Katalin, M.D., Ph.D, Dérczy, Katalin, M.D, Mangel, László, M.D., Ph.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 3
container_start_page 250
container_title Medical dosimetry : official journal of the American Association of Medical Dosimetrists
container_volume 36
creator Kovács, Péter, M.Sc
Sebestyén, Zsolt, M.Sc
Farkas, Róbert, M.D
Bellyei, Szabolcs, M.D., Ph.D
Szigeti, András, M.D., Ph.D
Liposits, Gábor, M.D
Hideghéty, Katalin, M.D., Ph.D
Dérczy, Katalin, M.D
Mangel, László, M.D., Ph.D
description Abstract A pelvic phantom was developed for use in testing image-guided radiation therapy (IGRT) and adaptive applications in radiation therapy (ART) with simulating the anterior-posterior internal organ motions during prostate radiotherapy. Measurements could be done with an ionization chamber (IC) in the simulated prostate. The rectum was simulated by air-equivalent material (AEM). The volume superior to the IC placement was considered as the bladder. The extension of AEM volume could be varied. The vertical position of the IC placement could be shifted by ±1 cm to simulate the prostate motion parallel to the changes in bladder volume. The reality of the simulation was inspected. Three-millimeter-slice-increment computed tomography (CT) scans were taken for irradiation planning. The structure set was adapted to the phantom from a treated patient. Planning target volume was delineated according to the RTOG 0126 study. IMRT and 3D conformal radiation therapy (3D-CRT) plans were made. Prostate motion and rectum volume changes were simulated in the phantom. IC displacement was corrected by phantom shifting. The delivered dose was measured with IC in 7 cases using intensity-modulated radiation therapy (IMRT) and 3D-CRT fractions, and single square-shaped beams: anteroposterior (AP), posteroanterior (PA), and lateral (LAT). Variations from the calculated doses were slightly below 1% at IMRT and around 1% at 3D-CRT; below 4.5% at square AP beam; up to 9% at square PA beam; and around 0.5% at square LAT beam. Other authors have already shown that by using planning systems and ultrasonic and cone beam CT guidance, correction of organ motions in a real patient during prostate cancer IGRT does not have a significant dosimetric effect. The inspection of our phantom—as described here—ended with similar results. Our team suggested that our model is sufficiently realistic and can be used for IGRT and ART testing.
doi_str_mv 10.1016/j.meddos.2010.04.002
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21590477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958394710000634</els_id><sourcerecordid>880997860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-43faedd44e3ff892c3e92f881c5a72f5f74aace577c71b62849036ce8b794d433</originalsourceid><addsrcrecordid>eNqFkU1LHTEUhkOx1Fvbf1DKgAtXc3vyMZNkI4jYVrAotF2H3MyJ5jo30WSu4L9vhrFduOkqcPKcD56XkE8U1hRo_2W73uEwpLJmUEsg1gDsDVlRJXkrgLEDsgLdqZZrIQ_J-1K2ANAJ4O_IIYOup1LKFRFnzQ2OT8E1N3c2TmnX-JSbH2nAMcTb5jJOmKMdm-t8a2OtTyHF8oG89XYs-PHlPSK_v178Ov_eXl1_uzw_u2od13xqBfe2nigEcu-VZo6jZl4p6jorme-8FNY67KR0km56poQG3jtUG6nFIDg_IsfL3FSmYIoLE7o7l2JENxlGOw1CykqdLNRDTo97LJPZheJwHG3EtC9GKdBaqh4qKRbS5VRKRm8ectjZ_GwomFmq2ZpFqpmlGhCmSq1tn18W7Df1-1_TX4sVOF0ArDKeAub5VowOh5DnU4cU_rfh9QBX9Qdnx3t8xrJN-zmEYqgpzID5OQc750prpNBzwf8AFYScqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880997860</pqid></control><display><type>article</type><title>A Pelvic Phantom for Modeling Internal Organ Motions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kovács, Péter, M.Sc ; Sebestyén, Zsolt, M.Sc ; Farkas, Róbert, M.D ; Bellyei, Szabolcs, M.D., Ph.D ; Szigeti, András, M.D., Ph.D ; Liposits, Gábor, M.D ; Hideghéty, Katalin, M.D., Ph.D ; Dérczy, Katalin, M.D ; Mangel, László, M.D., Ph.D</creator><creatorcontrib>Kovács, Péter, M.Sc ; Sebestyén, Zsolt, M.Sc ; Farkas, Róbert, M.D ; Bellyei, Szabolcs, M.D., Ph.D ; Szigeti, András, M.D., Ph.D ; Liposits, Gábor, M.D ; Hideghéty, Katalin, M.D., Ph.D ; Dérczy, Katalin, M.D ; Mangel, László, M.D., Ph.D</creatorcontrib><description>Abstract A pelvic phantom was developed for use in testing image-guided radiation therapy (IGRT) and adaptive applications in radiation therapy (ART) with simulating the anterior-posterior internal organ motions during prostate radiotherapy. Measurements could be done with an ionization chamber (IC) in the simulated prostate. The rectum was simulated by air-equivalent material (AEM). The volume superior to the IC placement was considered as the bladder. The extension of AEM volume could be varied. The vertical position of the IC placement could be shifted by ±1 cm to simulate the prostate motion parallel to the changes in bladder volume. The reality of the simulation was inspected. Three-millimeter-slice-increment computed tomography (CT) scans were taken for irradiation planning. The structure set was adapted to the phantom from a treated patient. Planning target volume was delineated according to the RTOG 0126 study. IMRT and 3D conformal radiation therapy (3D-CRT) plans were made. Prostate motion and rectum volume changes were simulated in the phantom. IC displacement was corrected by phantom shifting. The delivered dose was measured with IC in 7 cases using intensity-modulated radiation therapy (IMRT) and 3D-CRT fractions, and single square-shaped beams: anteroposterior (AP), posteroanterior (PA), and lateral (LAT). Variations from the calculated doses were slightly below 1% at IMRT and around 1% at 3D-CRT; below 4.5% at square AP beam; up to 9% at square PA beam; and around 0.5% at square LAT beam. Other authors have already shown that by using planning systems and ultrasonic and cone beam CT guidance, correction of organ motions in a real patient during prostate cancer IGRT does not have a significant dosimetric effect. The inspection of our phantom—as described here—ended with similar results. Our team suggested that our model is sufficiently realistic and can be used for IGRT and ART testing.</description><identifier>ISSN: 0958-3947</identifier><identifier>EISSN: 1873-4022</identifier><identifier>DOI: 10.1016/j.meddos.2010.04.002</identifier><identifier>PMID: 20561777</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>BLADDER ; BODY ; CAT SCANNING ; COMPUTERIZED TOMOGRAPHY ; Conformal radiotherapy ; DIAGNOSTIC TECHNIQUES ; DIGESTIVE SYSTEM ; DISEASES ; DOSES ; DOSIMETRY ; GASTROINTESTINAL TRACT ; GLANDS ; Hematology, Oncology and Palliative Medicine ; Humans ; IGRT ; IMRT ; INTESTINES ; IRRADIATION ; LARGE INTESTINE ; MALE GENITALS ; MEDICINE ; MOCKUP ; Movement ; NEOPLASMS ; NUCLEAR MEDICINE ; ORGANS ; Pelvic phantom ; Pelvis - radiation effects ; PHANTOMS ; Phantoms, Imaging ; PROSTATE ; RADIATION DOSES ; RADIATION PROTECTION AND DOSIMETRY ; RADIOLOGY ; RADIOTHERAPY ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted ; Radiotherapy, Intensity-Modulated ; RECTUM ; SIMULATION ; STRUCTURAL MODELS ; THERAPY ; TOMOGRAPHY ; URINARY TRACT</subject><ispartof>Medical dosimetry : official journal of the American Association of Medical Dosimetrists, 2011, Vol.36 (3), p.250-254</ispartof><rights>American Association of Medical Dosimetrists</rights><rights>2011 American Association of Medical Dosimetrists</rights><rights>Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c393t-43faedd44e3ff892c3e92f881c5a72f5f74aace577c71b62849036ce8b794d433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0958394710000634$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20561777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21590477$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kovács, Péter, M.Sc</creatorcontrib><creatorcontrib>Sebestyén, Zsolt, M.Sc</creatorcontrib><creatorcontrib>Farkas, Róbert, M.D</creatorcontrib><creatorcontrib>Bellyei, Szabolcs, M.D., Ph.D</creatorcontrib><creatorcontrib>Szigeti, András, M.D., Ph.D</creatorcontrib><creatorcontrib>Liposits, Gábor, M.D</creatorcontrib><creatorcontrib>Hideghéty, Katalin, M.D., Ph.D</creatorcontrib><creatorcontrib>Dérczy, Katalin, M.D</creatorcontrib><creatorcontrib>Mangel, László, M.D., Ph.D</creatorcontrib><title>A Pelvic Phantom for Modeling Internal Organ Motions</title><title>Medical dosimetry : official journal of the American Association of Medical Dosimetrists</title><addtitle>Med Dosim</addtitle><description>Abstract A pelvic phantom was developed for use in testing image-guided radiation therapy (IGRT) and adaptive applications in radiation therapy (ART) with simulating the anterior-posterior internal organ motions during prostate radiotherapy. Measurements could be done with an ionization chamber (IC) in the simulated prostate. The rectum was simulated by air-equivalent material (AEM). The volume superior to the IC placement was considered as the bladder. The extension of AEM volume could be varied. The vertical position of the IC placement could be shifted by ±1 cm to simulate the prostate motion parallel to the changes in bladder volume. The reality of the simulation was inspected. Three-millimeter-slice-increment computed tomography (CT) scans were taken for irradiation planning. The structure set was adapted to the phantom from a treated patient. Planning target volume was delineated according to the RTOG 0126 study. IMRT and 3D conformal radiation therapy (3D-CRT) plans were made. Prostate motion and rectum volume changes were simulated in the phantom. IC displacement was corrected by phantom shifting. The delivered dose was measured with IC in 7 cases using intensity-modulated radiation therapy (IMRT) and 3D-CRT fractions, and single square-shaped beams: anteroposterior (AP), posteroanterior (PA), and lateral (LAT). Variations from the calculated doses were slightly below 1% at IMRT and around 1% at 3D-CRT; below 4.5% at square AP beam; up to 9% at square PA beam; and around 0.5% at square LAT beam. Other authors have already shown that by using planning systems and ultrasonic and cone beam CT guidance, correction of organ motions in a real patient during prostate cancer IGRT does not have a significant dosimetric effect. The inspection of our phantom—as described here—ended with similar results. Our team suggested that our model is sufficiently realistic and can be used for IGRT and ART testing.</description><subject>BLADDER</subject><subject>BODY</subject><subject>CAT SCANNING</subject><subject>COMPUTERIZED TOMOGRAPHY</subject><subject>Conformal radiotherapy</subject><subject>DIAGNOSTIC TECHNIQUES</subject><subject>DIGESTIVE SYSTEM</subject><subject>DISEASES</subject><subject>DOSES</subject><subject>DOSIMETRY</subject><subject>GASTROINTESTINAL TRACT</subject><subject>GLANDS</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>IGRT</subject><subject>IMRT</subject><subject>INTESTINES</subject><subject>IRRADIATION</subject><subject>LARGE INTESTINE</subject><subject>MALE GENITALS</subject><subject>MEDICINE</subject><subject>MOCKUP</subject><subject>Movement</subject><subject>NEOPLASMS</subject><subject>NUCLEAR MEDICINE</subject><subject>ORGANS</subject><subject>Pelvic phantom</subject><subject>Pelvis - radiation effects</subject><subject>PHANTOMS</subject><subject>Phantoms, Imaging</subject><subject>PROSTATE</subject><subject>RADIATION DOSES</subject><subject>RADIATION PROTECTION AND DOSIMETRY</subject><subject>RADIOLOGY</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted</subject><subject>Radiotherapy, Intensity-Modulated</subject><subject>RECTUM</subject><subject>SIMULATION</subject><subject>STRUCTURAL MODELS</subject><subject>THERAPY</subject><subject>TOMOGRAPHY</subject><subject>URINARY TRACT</subject><issn>0958-3947</issn><issn>1873-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1LHTEUhkOx1Fvbf1DKgAtXc3vyMZNkI4jYVrAotF2H3MyJ5jo30WSu4L9vhrFduOkqcPKcD56XkE8U1hRo_2W73uEwpLJmUEsg1gDsDVlRJXkrgLEDsgLdqZZrIQ_J-1K2ANAJ4O_IIYOup1LKFRFnzQ2OT8E1N3c2TmnX-JSbH2nAMcTb5jJOmKMdm-t8a2OtTyHF8oG89XYs-PHlPSK_v178Ov_eXl1_uzw_u2od13xqBfe2nigEcu-VZo6jZl4p6jorme-8FNY67KR0km56poQG3jtUG6nFIDg_IsfL3FSmYIoLE7o7l2JENxlGOw1CykqdLNRDTo97LJPZheJwHG3EtC9GKdBaqh4qKRbS5VRKRm8ectjZ_GwomFmq2ZpFqpmlGhCmSq1tn18W7Df1-1_TX4sVOF0ArDKeAub5VowOh5DnU4cU_rfh9QBX9Qdnx3t8xrJN-zmEYqgpzID5OQc750prpNBzwf8AFYScqg</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Kovács, Péter, M.Sc</creator><creator>Sebestyén, Zsolt, M.Sc</creator><creator>Farkas, Róbert, M.D</creator><creator>Bellyei, Szabolcs, M.D., Ph.D</creator><creator>Szigeti, András, M.D., Ph.D</creator><creator>Liposits, Gábor, M.D</creator><creator>Hideghéty, Katalin, M.D., Ph.D</creator><creator>Dérczy, Katalin, M.D</creator><creator>Mangel, László, M.D., Ph.D</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>2011</creationdate><title>A Pelvic Phantom for Modeling Internal Organ Motions</title><author>Kovács, Péter, M.Sc ; Sebestyén, Zsolt, M.Sc ; Farkas, Róbert, M.D ; Bellyei, Szabolcs, M.D., Ph.D ; Szigeti, András, M.D., Ph.D ; Liposits, Gábor, M.D ; Hideghéty, Katalin, M.D., Ph.D ; Dérczy, Katalin, M.D ; Mangel, László, M.D., Ph.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-43faedd44e3ff892c3e92f881c5a72f5f74aace577c71b62849036ce8b794d433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>BLADDER</topic><topic>BODY</topic><topic>CAT SCANNING</topic><topic>COMPUTERIZED TOMOGRAPHY</topic><topic>Conformal radiotherapy</topic><topic>DIAGNOSTIC TECHNIQUES</topic><topic>DIGESTIVE SYSTEM</topic><topic>DISEASES</topic><topic>DOSES</topic><topic>DOSIMETRY</topic><topic>GASTROINTESTINAL TRACT</topic><topic>GLANDS</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>IGRT</topic><topic>IMRT</topic><topic>INTESTINES</topic><topic>IRRADIATION</topic><topic>LARGE INTESTINE</topic><topic>MALE GENITALS</topic><topic>MEDICINE</topic><topic>MOCKUP</topic><topic>Movement</topic><topic>NEOPLASMS</topic><topic>NUCLEAR MEDICINE</topic><topic>ORGANS</topic><topic>Pelvic phantom</topic><topic>Pelvis - radiation effects</topic><topic>PHANTOMS</topic><topic>Phantoms, Imaging</topic><topic>PROSTATE</topic><topic>RADIATION DOSES</topic><topic>RADIATION PROTECTION AND DOSIMETRY</topic><topic>RADIOLOGY</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted</topic><topic>Radiotherapy, Intensity-Modulated</topic><topic>RECTUM</topic><topic>SIMULATION</topic><topic>STRUCTURAL MODELS</topic><topic>THERAPY</topic><topic>TOMOGRAPHY</topic><topic>URINARY TRACT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovács, Péter, M.Sc</creatorcontrib><creatorcontrib>Sebestyén, Zsolt, M.Sc</creatorcontrib><creatorcontrib>Farkas, Róbert, M.D</creatorcontrib><creatorcontrib>Bellyei, Szabolcs, M.D., Ph.D</creatorcontrib><creatorcontrib>Szigeti, András, M.D., Ph.D</creatorcontrib><creatorcontrib>Liposits, Gábor, M.D</creatorcontrib><creatorcontrib>Hideghéty, Katalin, M.D., Ph.D</creatorcontrib><creatorcontrib>Dérczy, Katalin, M.D</creatorcontrib><creatorcontrib>Mangel, László, M.D., Ph.D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Medical dosimetry : official journal of the American Association of Medical Dosimetrists</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovács, Péter, M.Sc</au><au>Sebestyén, Zsolt, M.Sc</au><au>Farkas, Róbert, M.D</au><au>Bellyei, Szabolcs, M.D., Ph.D</au><au>Szigeti, András, M.D., Ph.D</au><au>Liposits, Gábor, M.D</au><au>Hideghéty, Katalin, M.D., Ph.D</au><au>Dérczy, Katalin, M.D</au><au>Mangel, László, M.D., Ph.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pelvic Phantom for Modeling Internal Organ Motions</atitle><jtitle>Medical dosimetry : official journal of the American Association of Medical Dosimetrists</jtitle><addtitle>Med Dosim</addtitle><date>2011</date><risdate>2011</risdate><volume>36</volume><issue>3</issue><spage>250</spage><epage>254</epage><pages>250-254</pages><issn>0958-3947</issn><eissn>1873-4022</eissn><abstract>Abstract A pelvic phantom was developed for use in testing image-guided radiation therapy (IGRT) and adaptive applications in radiation therapy (ART) with simulating the anterior-posterior internal organ motions during prostate radiotherapy. Measurements could be done with an ionization chamber (IC) in the simulated prostate. The rectum was simulated by air-equivalent material (AEM). The volume superior to the IC placement was considered as the bladder. The extension of AEM volume could be varied. The vertical position of the IC placement could be shifted by ±1 cm to simulate the prostate motion parallel to the changes in bladder volume. The reality of the simulation was inspected. Three-millimeter-slice-increment computed tomography (CT) scans were taken for irradiation planning. The structure set was adapted to the phantom from a treated patient. Planning target volume was delineated according to the RTOG 0126 study. IMRT and 3D conformal radiation therapy (3D-CRT) plans were made. Prostate motion and rectum volume changes were simulated in the phantom. IC displacement was corrected by phantom shifting. The delivered dose was measured with IC in 7 cases using intensity-modulated radiation therapy (IMRT) and 3D-CRT fractions, and single square-shaped beams: anteroposterior (AP), posteroanterior (PA), and lateral (LAT). Variations from the calculated doses were slightly below 1% at IMRT and around 1% at 3D-CRT; below 4.5% at square AP beam; up to 9% at square PA beam; and around 0.5% at square LAT beam. Other authors have already shown that by using planning systems and ultrasonic and cone beam CT guidance, correction of organ motions in a real patient during prostate cancer IGRT does not have a significant dosimetric effect. The inspection of our phantom—as described here—ended with similar results. Our team suggested that our model is sufficiently realistic and can be used for IGRT and ART testing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20561777</pmid><doi>10.1016/j.meddos.2010.04.002</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0958-3947
ispartof Medical dosimetry : official journal of the American Association of Medical Dosimetrists, 2011, Vol.36 (3), p.250-254
issn 0958-3947
1873-4022
language eng
recordid cdi_osti_scitechconnect_21590477
source MEDLINE; Elsevier ScienceDirect Journals
subjects BLADDER
BODY
CAT SCANNING
COMPUTERIZED TOMOGRAPHY
Conformal radiotherapy
DIAGNOSTIC TECHNIQUES
DIGESTIVE SYSTEM
DISEASES
DOSES
DOSIMETRY
GASTROINTESTINAL TRACT
GLANDS
Hematology, Oncology and Palliative Medicine
Humans
IGRT
IMRT
INTESTINES
IRRADIATION
LARGE INTESTINE
MALE GENITALS
MEDICINE
MOCKUP
Movement
NEOPLASMS
NUCLEAR MEDICINE
ORGANS
Pelvic phantom
Pelvis - radiation effects
PHANTOMS
Phantoms, Imaging
PROSTATE
RADIATION DOSES
RADIATION PROTECTION AND DOSIMETRY
RADIOLOGY
RADIOTHERAPY
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted
Radiotherapy, Intensity-Modulated
RECTUM
SIMULATION
STRUCTURAL MODELS
THERAPY
TOMOGRAPHY
URINARY TRACT
title A Pelvic Phantom for Modeling Internal Organ Motions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pelvic%20Phantom%20for%20Modeling%20Internal%20Organ%20Motions&rft.jtitle=Medical%20dosimetry%20:%20official%20journal%20of%20the%20American%20Association%20of%20Medical%20Dosimetrists&rft.au=Kov%C3%A1cs,%20P%C3%A9ter,%20M.Sc&rft.date=2011&rft.volume=36&rft.issue=3&rft.spage=250&rft.epage=254&rft.pages=250-254&rft.issn=0958-3947&rft.eissn=1873-4022&rft_id=info:doi/10.1016/j.meddos.2010.04.002&rft_dat=%3Cproquest_osti_%3E880997860%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880997860&rft_id=info:pmid/20561777&rft_els_id=S0958394710000634&rfr_iscdi=true