SLOW RADIATION-DRIVEN WIND SOLUTIONS OF A-TYPE SUPERGIANTS
The theory of radiation-driven winds succeeded in describing terminal velocities and mass-loss rates of massive stars. However, for A-type supergiants the standard m-CAK solution predicts values of mass loss and terminal velocity higher than the observed values. Based on the existence of a slow wind...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2011-08, Vol.737 (1), p.18-jQuery1323905114505='48' |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | jQuery1323905114505='48' |
---|---|
container_issue | 1 |
container_start_page | 18 |
container_title | The Astrophysical journal |
container_volume | 737 |
creator | CURE, M CIDALE, L GRANADA, A |
description | The theory of radiation-driven winds succeeded in describing terminal velocities and mass-loss rates of massive stars. However, for A-type supergiants the standard m-CAK solution predicts values of mass loss and terminal velocity higher than the observed values. Based on the existence of a slow wind solution in fast rotating massive stars, we explore numerically the parameter space of radiation-driven flows to search for new wind solutions in slowly rotating stars that could explain the origin of these discrepancies. We solve the one-dimensional hydrodynamical equation of rotating radiation-driven winds at different stellar latitudes and explore the influence of ionization changes throughout the wind in the velocity profile. We have found that for particular sets of stellar and line-force parameters, a new slow solution exists over the entire star when the rotational speed is slow or even zero. In the case of slow rotating A-type supergiant stars, the presence of this novel slow solution at all latitudes leads to mass losses and wind terminal velocities which are in agreement with the observed values. The theoretical wind-momentum-luminosity relationship derived with these slow solutions shows very good agreement with the empirical relationship. In addition, the ratio between the terminal and escape velocities, which provides a simple way to predict stellar wind energy and momentum input into the interstellar medium, is also properly traced. |
doi_str_mv | 10.1088/0004-637X/737/1/18 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21579995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>920805565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-c8bc1800bdf726db143fdfc4b3e8319d4aa319f6befe3a71663d79b0c14bc6ed3</originalsourceid><addsrcrecordid>eNo9kEFPwjAYhhujiYj-AU9LjPE06bd2W-ttgYFLCCMMRE9N17VxZjBcx8F_7xYIpzffl-d9Dw9Cj4BfATM2whhTNyDh5ygk4QhGwK7QAHzCXEr88BoNLsAturP2pz89zgfoLZunW2cVTZJonaQLd7JKPuKFs00WEydL55v-mTnp1Inc9dcydrLNMl7Nkmixzu7RjZGV1Q_nHKLNNF6P3915OkvG0dxVhEHrKpYrYBjnhQm9oMiBElMYRXOiGQFeUCm7MEGujSYyhCAgRchzrIDmKtAFGaKn025t21JYVbZafat6v9eqFR74Iefc76iXE3Vo6t-jtq3YlVbpqpJ7XR-t4B5m2PeDnvROpGpqaxttxKEpd7L5E4BFb1P0dkQvS3Q2BQhgXen5PC-tkpVp5F6V9tL0KAWgASf_lE5u8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920805565</pqid></control><display><type>article</type><title>SLOW RADIATION-DRIVEN WIND SOLUTIONS OF A-TYPE SUPERGIANTS</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>CURE, M ; CIDALE, L ; GRANADA, A</creator><creatorcontrib>CURE, M ; CIDALE, L ; GRANADA, A</creatorcontrib><description>The theory of radiation-driven winds succeeded in describing terminal velocities and mass-loss rates of massive stars. However, for A-type supergiants the standard m-CAK solution predicts values of mass loss and terminal velocity higher than the observed values. Based on the existence of a slow wind solution in fast rotating massive stars, we explore numerically the parameter space of radiation-driven flows to search for new wind solutions in slowly rotating stars that could explain the origin of these discrepancies. We solve the one-dimensional hydrodynamical equation of rotating radiation-driven winds at different stellar latitudes and explore the influence of ionization changes throughout the wind in the velocity profile. We have found that for particular sets of stellar and line-force parameters, a new slow solution exists over the entire star when the rotational speed is slow or even zero. In the case of slow rotating A-type supergiant stars, the presence of this novel slow solution at all latitudes leads to mass losses and wind terminal velocities which are in agreement with the observed values. The theoretical wind-momentum-luminosity relationship derived with these slow solutions shows very good agreement with the empirical relationship. In addition, the ratio between the terminal and escape velocities, which provides a simple way to predict stellar wind energy and momentum input into the interstellar medium, is also properly traced.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/737/1/18</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP</publisher><subject>Astronomy ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Earth, ocean, space ; Exact sciences and technology ; FLUID MECHANICS ; GIANT STARS ; HYDRODYNAMICS ; IONIZATION ; LUMINOSITY ; MASS ; MECHANICS ; ONE-DIMENSIONAL CALCULATIONS ; OPTICAL PROPERTIES ; PHYSICAL PROPERTIES ; STARS ; STELLAR ACTIVITY ; STELLAR WINDS ; SUPERGIANT STARS ; VELOCITY</subject><ispartof>The Astrophysical journal, 2011-08, Vol.737 (1), p.18-jQuery1323905114505='48'</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-c8bc1800bdf726db143fdfc4b3e8319d4aa319f6befe3a71663d79b0c14bc6ed3</citedby><cites>FETCH-LOGICAL-c381t-c8bc1800bdf726db143fdfc4b3e8319d4aa319f6befe3a71663d79b0c14bc6ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24411469$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21579995$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>CURE, M</creatorcontrib><creatorcontrib>CIDALE, L</creatorcontrib><creatorcontrib>GRANADA, A</creatorcontrib><title>SLOW RADIATION-DRIVEN WIND SOLUTIONS OF A-TYPE SUPERGIANTS</title><title>The Astrophysical journal</title><description>The theory of radiation-driven winds succeeded in describing terminal velocities and mass-loss rates of massive stars. However, for A-type supergiants the standard m-CAK solution predicts values of mass loss and terminal velocity higher than the observed values. Based on the existence of a slow wind solution in fast rotating massive stars, we explore numerically the parameter space of radiation-driven flows to search for new wind solutions in slowly rotating stars that could explain the origin of these discrepancies. We solve the one-dimensional hydrodynamical equation of rotating radiation-driven winds at different stellar latitudes and explore the influence of ionization changes throughout the wind in the velocity profile. We have found that for particular sets of stellar and line-force parameters, a new slow solution exists over the entire star when the rotational speed is slow or even zero. In the case of slow rotating A-type supergiant stars, the presence of this novel slow solution at all latitudes leads to mass losses and wind terminal velocities which are in agreement with the observed values. The theoretical wind-momentum-luminosity relationship derived with these slow solutions shows very good agreement with the empirical relationship. In addition, the ratio between the terminal and escape velocities, which provides a simple way to predict stellar wind energy and momentum input into the interstellar medium, is also properly traced.</description><subject>Astronomy</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>FLUID MECHANICS</subject><subject>GIANT STARS</subject><subject>HYDRODYNAMICS</subject><subject>IONIZATION</subject><subject>LUMINOSITY</subject><subject>MASS</subject><subject>MECHANICS</subject><subject>ONE-DIMENSIONAL CALCULATIONS</subject><subject>OPTICAL PROPERTIES</subject><subject>PHYSICAL PROPERTIES</subject><subject>STARS</subject><subject>STELLAR ACTIVITY</subject><subject>STELLAR WINDS</subject><subject>SUPERGIANT STARS</subject><subject>VELOCITY</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwjAYhhujiYj-AU9LjPE06bd2W-ttgYFLCCMMRE9N17VxZjBcx8F_7xYIpzffl-d9Dw9Cj4BfATM2whhTNyDh5ygk4QhGwK7QAHzCXEr88BoNLsAturP2pz89zgfoLZunW2cVTZJonaQLd7JKPuKFs00WEydL55v-mTnp1Inc9dcydrLNMl7Nkmixzu7RjZGV1Q_nHKLNNF6P3915OkvG0dxVhEHrKpYrYBjnhQm9oMiBElMYRXOiGQFeUCm7MEGujSYyhCAgRchzrIDmKtAFGaKn025t21JYVbZafat6v9eqFR74Iefc76iXE3Vo6t-jtq3YlVbpqpJ7XR-t4B5m2PeDnvROpGpqaxttxKEpd7L5E4BFb1P0dkQvS3Q2BQhgXen5PC-tkpVp5F6V9tL0KAWgASf_lE5u8g</recordid><startdate>20110810</startdate><enddate>20110810</enddate><creator>CURE, M</creator><creator>CIDALE, L</creator><creator>GRANADA, A</creator><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>20110810</creationdate><title>SLOW RADIATION-DRIVEN WIND SOLUTIONS OF A-TYPE SUPERGIANTS</title><author>CURE, M ; CIDALE, L ; GRANADA, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-c8bc1800bdf726db143fdfc4b3e8319d4aa319f6befe3a71663d79b0c14bc6ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Astronomy</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>FLUID MECHANICS</topic><topic>GIANT STARS</topic><topic>HYDRODYNAMICS</topic><topic>IONIZATION</topic><topic>LUMINOSITY</topic><topic>MASS</topic><topic>MECHANICS</topic><topic>ONE-DIMENSIONAL CALCULATIONS</topic><topic>OPTICAL PROPERTIES</topic><topic>PHYSICAL PROPERTIES</topic><topic>STARS</topic><topic>STELLAR ACTIVITY</topic><topic>STELLAR WINDS</topic><topic>SUPERGIANT STARS</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CURE, M</creatorcontrib><creatorcontrib>CIDALE, L</creatorcontrib><creatorcontrib>GRANADA, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CURE, M</au><au>CIDALE, L</au><au>GRANADA, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SLOW RADIATION-DRIVEN WIND SOLUTIONS OF A-TYPE SUPERGIANTS</atitle><jtitle>The Astrophysical journal</jtitle><date>2011-08-10</date><risdate>2011</risdate><volume>737</volume><issue>1</issue><spage>18</spage><epage>jQuery1323905114505='48'</epage><pages>18-jQuery1323905114505='48'</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>The theory of radiation-driven winds succeeded in describing terminal velocities and mass-loss rates of massive stars. However, for A-type supergiants the standard m-CAK solution predicts values of mass loss and terminal velocity higher than the observed values. Based on the existence of a slow wind solution in fast rotating massive stars, we explore numerically the parameter space of radiation-driven flows to search for new wind solutions in slowly rotating stars that could explain the origin of these discrepancies. We solve the one-dimensional hydrodynamical equation of rotating radiation-driven winds at different stellar latitudes and explore the influence of ionization changes throughout the wind in the velocity profile. We have found that for particular sets of stellar and line-force parameters, a new slow solution exists over the entire star when the rotational speed is slow or even zero. In the case of slow rotating A-type supergiant stars, the presence of this novel slow solution at all latitudes leads to mass losses and wind terminal velocities which are in agreement with the observed values. The theoretical wind-momentum-luminosity relationship derived with these slow solutions shows very good agreement with the empirical relationship. In addition, the ratio between the terminal and escape velocities, which provides a simple way to predict stellar wind energy and momentum input into the interstellar medium, is also properly traced.</abstract><cop>Bristol</cop><pub>IOP</pub><doi>10.1088/0004-637X/737/1/18</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2011-08, Vol.737 (1), p.18-jQuery1323905114505='48' |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_21579995 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Astronomy ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Earth, ocean, space Exact sciences and technology FLUID MECHANICS GIANT STARS HYDRODYNAMICS IONIZATION LUMINOSITY MASS MECHANICS ONE-DIMENSIONAL CALCULATIONS OPTICAL PROPERTIES PHYSICAL PROPERTIES STARS STELLAR ACTIVITY STELLAR WINDS SUPERGIANT STARS VELOCITY |
title | SLOW RADIATION-DRIVEN WIND SOLUTIONS OF A-TYPE SUPERGIANTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SLOW%20RADIATION-DRIVEN%20WIND%20SOLUTIONS%20OF%20A-TYPE%20SUPERGIANTS&rft.jtitle=The%20Astrophysical%20journal&rft.au=CURE,%20M&rft.date=2011-08-10&rft.volume=737&rft.issue=1&rft.spage=18&rft.epage=jQuery1323905114505='48'&rft.pages=18-jQuery1323905114505='48'&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/737/1/18&rft_dat=%3Cproquest_osti_%3E920805565%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920805565&rft_id=info:pmid/&rfr_iscdi=true |