Anomalies, gauge field topology, and the lattice
Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topo...
Gespeichert in:
Veröffentlicht in: | Annals of physics 2011-04, Vol.326 (4), p.911-925 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 925 |
---|---|
container_issue | 4 |
container_start_page | 911 |
container_title | Annals of physics |
container_volume | 326 |
creator | Creutz, Michael |
description | Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topological density. For typical gauge field configurations in a numerical simulation, however, quantum fluctuations dominate, and the sum of this density over the system does not generally give an integer winding. On cooling with respect to the Wilson gauge action, instanton like structures do emerge. As cooling proceeds, these objects tend shrink and finally “fall through the lattice.” Modifying the action can block the shrinking at the expense of a loss of reflection positivity. The cooling procedure is highly sensitive to the details of the initial steps, suggesting that quantum fluctuations induce a small but fundamental ambiguity in the definition of topological susceptibility. |
doi_str_mv | 10.1016/j.aop.2010.10.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21579884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491610001880</els_id><sourcerecordid>861566307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-6e23a50b36f8195c54abb7715c2094612cb0f1f3e1c526b896ab9c5b7e4ff213</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9giGFia4EtixxYTqviSKrF0YLMc99I6SuMQp0j99ziEiYHpdKfnPd09hFwDTYACv68T7bokpT99QgFOyAyo5DHN2McpmVFKsziXwM_Jhfc1DUTOxIzQx9btdWPRL6KtPmwxqiw2m2hwnWvc9riIdBu6HUaNHgZr8JKcVbrxePVb52T9_LRevsar95e35eMqNpnIh5hjmmlGy4xXAiQzLNdlWRTATEplziE1Ja2gyhAMS3kpJNelNKwsMK-qFLI5uZ3WOj9Y5Y0d0OyMa1s0g0qBFVKIPFB3E9X17vOAflB76w02jW7RHbwSHBjnGS0CefOHrN2hb8MHSuSCS0hBBggmyPTO-x4r1fV2r_ujAqpGzapWQbMaNY-jIDFkHqYMBhlfFvvxWGwNbmw_3rpx9p_0NxYsgik</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848691219</pqid></control><display><type>article</type><title>Anomalies, gauge field topology, and the lattice</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Creutz, Michael</creator><creatorcontrib>Creutz, Michael</creatorcontrib><description>Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topological density. For typical gauge field configurations in a numerical simulation, however, quantum fluctuations dominate, and the sum of this density over the system does not generally give an integer winding. On cooling with respect to the Wilson gauge action, instanton like structures do emerge. As cooling proceeds, these objects tend shrink and finally “fall through the lattice.” Modifying the action can block the shrinking at the expense of a loss of reflection positivity. The cooling procedure is highly sensitive to the details of the initial steps, suggesting that quantum fluctuations induce a small but fundamental ambiguity in the definition of topological susceptibility.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2010.10.011</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Anomalies ; CHIRAL SYMMETRY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPUTERIZED SIMULATION ; COOLING ; DENSITY ; DIRAC OPERATORS ; FERMIONS ; Fluctuation ; FLUCTUATIONS ; Gages ; Gauge field topology ; Gauges ; Lattice theory ; Lattices ; Mathematical models ; MATHEMATICAL OPERATORS ; MATHEMATICS ; PHYSICAL PROPERTIES ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUANTUM OPERATORS ; Quantum physics ; REFLECTION ; SIMULATION ; SYMMETRY ; TOPOLOGY ; VARIATIONS</subject><ispartof>Annals of physics, 2011-04, Vol.326 (4), p.911-925</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-6e23a50b36f8195c54abb7715c2094612cb0f1f3e1c526b896ab9c5b7e4ff213</citedby><cites>FETCH-LOGICAL-c384t-6e23a50b36f8195c54abb7715c2094612cb0f1f3e1c526b896ab9c5b7e4ff213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aop.2010.10.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21579884$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Creutz, Michael</creatorcontrib><title>Anomalies, gauge field topology, and the lattice</title><title>Annals of physics</title><description>Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topological density. For typical gauge field configurations in a numerical simulation, however, quantum fluctuations dominate, and the sum of this density over the system does not generally give an integer winding. On cooling with respect to the Wilson gauge action, instanton like structures do emerge. As cooling proceeds, these objects tend shrink and finally “fall through the lattice.” Modifying the action can block the shrinking at the expense of a loss of reflection positivity. The cooling procedure is highly sensitive to the details of the initial steps, suggesting that quantum fluctuations induce a small but fundamental ambiguity in the definition of topological susceptibility.</description><subject>Anomalies</subject><subject>CHIRAL SYMMETRY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COOLING</subject><subject>DENSITY</subject><subject>DIRAC OPERATORS</subject><subject>FERMIONS</subject><subject>Fluctuation</subject><subject>FLUCTUATIONS</subject><subject>Gages</subject><subject>Gauge field topology</subject><subject>Gauges</subject><subject>Lattice theory</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MATHEMATICS</subject><subject>PHYSICAL PROPERTIES</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUANTUM OPERATORS</subject><subject>Quantum physics</subject><subject>REFLECTION</subject><subject>SIMULATION</subject><subject>SYMMETRY</subject><subject>TOPOLOGY</subject><subject>VARIATIONS</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9giGFia4EtixxYTqviSKrF0YLMc99I6SuMQp0j99ziEiYHpdKfnPd09hFwDTYACv68T7bokpT99QgFOyAyo5DHN2McpmVFKsziXwM_Jhfc1DUTOxIzQx9btdWPRL6KtPmwxqiw2m2hwnWvc9riIdBu6HUaNHgZr8JKcVbrxePVb52T9_LRevsar95e35eMqNpnIh5hjmmlGy4xXAiQzLNdlWRTATEplziE1Ja2gyhAMS3kpJNelNKwsMK-qFLI5uZ3WOj9Y5Y0d0OyMa1s0g0qBFVKIPFB3E9X17vOAflB76w02jW7RHbwSHBjnGS0CefOHrN2hb8MHSuSCS0hBBggmyPTO-x4r1fV2r_ujAqpGzapWQbMaNY-jIDFkHqYMBhlfFvvxWGwNbmw_3rpx9p_0NxYsgik</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Creutz, Michael</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20110401</creationdate><title>Anomalies, gauge field topology, and the lattice</title><author>Creutz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-6e23a50b36f8195c54abb7715c2094612cb0f1f3e1c526b896ab9c5b7e4ff213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anomalies</topic><topic>CHIRAL SYMMETRY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COOLING</topic><topic>DENSITY</topic><topic>DIRAC OPERATORS</topic><topic>FERMIONS</topic><topic>Fluctuation</topic><topic>FLUCTUATIONS</topic><topic>Gages</topic><topic>Gauge field topology</topic><topic>Gauges</topic><topic>Lattice theory</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MATHEMATICS</topic><topic>PHYSICAL PROPERTIES</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUANTUM OPERATORS</topic><topic>Quantum physics</topic><topic>REFLECTION</topic><topic>SIMULATION</topic><topic>SYMMETRY</topic><topic>TOPOLOGY</topic><topic>VARIATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creutz, Michael</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creutz, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomalies, gauge field topology, and the lattice</atitle><jtitle>Annals of physics</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>326</volume><issue>4</issue><spage>911</spage><epage>925</epage><pages>911-925</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topological density. For typical gauge field configurations in a numerical simulation, however, quantum fluctuations dominate, and the sum of this density over the system does not generally give an integer winding. On cooling with respect to the Wilson gauge action, instanton like structures do emerge. As cooling proceeds, these objects tend shrink and finally “fall through the lattice.” Modifying the action can block the shrinking at the expense of a loss of reflection positivity. The cooling procedure is highly sensitive to the details of the initial steps, suggesting that quantum fluctuations induce a small but fundamental ambiguity in the definition of topological susceptibility.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2010.10.011</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of physics, 2011-04, Vol.326 (4), p.911-925 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_osti_scitechconnect_21579884 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Anomalies CHIRAL SYMMETRY CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMPUTERIZED SIMULATION COOLING DENSITY DIRAC OPERATORS FERMIONS Fluctuation FLUCTUATIONS Gages Gauge field topology Gauges Lattice theory Lattices Mathematical models MATHEMATICAL OPERATORS MATHEMATICS PHYSICAL PROPERTIES PHYSICS OF ELEMENTARY PARTICLES AND FIELDS QUANTUM OPERATORS Quantum physics REFLECTION SIMULATION SYMMETRY TOPOLOGY VARIATIONS |
title | Anomalies, gauge field topology, and the lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomalies,%20gauge%20field%20topology,%20and%20the%20lattice&rft.jtitle=Annals%20of%20physics&rft.au=Creutz,%20Michael&rft.date=2011-04-01&rft.volume=326&rft.issue=4&rft.spage=911&rft.epage=925&rft.pages=911-925&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2010.10.011&rft_dat=%3Cproquest_osti_%3E861566307%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848691219&rft_id=info:pmid/&rft_els_id=S0003491610001880&rfr_iscdi=true |