Anomalies, gauge field topology, and the lattice

Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2011-04, Vol.326 (4), p.911-925
1. Verfasser: Creutz, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 925
container_issue 4
container_start_page 911
container_title Annals of physics
container_volume 326
creator Creutz, Michael
description Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topological density. For typical gauge field configurations in a numerical simulation, however, quantum fluctuations dominate, and the sum of this density over the system does not generally give an integer winding. On cooling with respect to the Wilson gauge action, instanton like structures do emerge. As cooling proceeds, these objects tend shrink and finally “fall through the lattice.” Modifying the action can block the shrinking at the expense of a loss of reflection positivity. The cooling procedure is highly sensitive to the details of the initial steps, suggesting that quantum fluctuations induce a small but fundamental ambiguity in the definition of topological susceptibility.
doi_str_mv 10.1016/j.aop.2010.10.011
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21579884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491610001880</els_id><sourcerecordid>861566307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-6e23a50b36f8195c54abb7715c2094612cb0f1f3e1c526b896ab9c5b7e4ff213</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9giGFia4EtixxYTqviSKrF0YLMc99I6SuMQp0j99ziEiYHpdKfnPd09hFwDTYACv68T7bokpT99QgFOyAyo5DHN2McpmVFKsziXwM_Jhfc1DUTOxIzQx9btdWPRL6KtPmwxqiw2m2hwnWvc9riIdBu6HUaNHgZr8JKcVbrxePVb52T9_LRevsar95e35eMqNpnIh5hjmmlGy4xXAiQzLNdlWRTATEplziE1Ja2gyhAMS3kpJNelNKwsMK-qFLI5uZ3WOj9Y5Y0d0OyMa1s0g0qBFVKIPFB3E9X17vOAflB76w02jW7RHbwSHBjnGS0CefOHrN2hb8MHSuSCS0hBBggmyPTO-x4r1fV2r_ujAqpGzapWQbMaNY-jIDFkHqYMBhlfFvvxWGwNbmw_3rpx9p_0NxYsgik</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848691219</pqid></control><display><type>article</type><title>Anomalies, gauge field topology, and the lattice</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Creutz, Michael</creator><creatorcontrib>Creutz, Michael</creatorcontrib><description>Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topological density. For typical gauge field configurations in a numerical simulation, however, quantum fluctuations dominate, and the sum of this density over the system does not generally give an integer winding. On cooling with respect to the Wilson gauge action, instanton like structures do emerge. As cooling proceeds, these objects tend shrink and finally “fall through the lattice.” Modifying the action can block the shrinking at the expense of a loss of reflection positivity. The cooling procedure is highly sensitive to the details of the initial steps, suggesting that quantum fluctuations induce a small but fundamental ambiguity in the definition of topological susceptibility.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2010.10.011</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Anomalies ; CHIRAL SYMMETRY ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPUTERIZED SIMULATION ; COOLING ; DENSITY ; DIRAC OPERATORS ; FERMIONS ; Fluctuation ; FLUCTUATIONS ; Gages ; Gauge field topology ; Gauges ; Lattice theory ; Lattices ; Mathematical models ; MATHEMATICAL OPERATORS ; MATHEMATICS ; PHYSICAL PROPERTIES ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUANTUM OPERATORS ; Quantum physics ; REFLECTION ; SIMULATION ; SYMMETRY ; TOPOLOGY ; VARIATIONS</subject><ispartof>Annals of physics, 2011-04, Vol.326 (4), p.911-925</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-6e23a50b36f8195c54abb7715c2094612cb0f1f3e1c526b896ab9c5b7e4ff213</citedby><cites>FETCH-LOGICAL-c384t-6e23a50b36f8195c54abb7715c2094612cb0f1f3e1c526b896ab9c5b7e4ff213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aop.2010.10.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21579884$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Creutz, Michael</creatorcontrib><title>Anomalies, gauge field topology, and the lattice</title><title>Annals of physics</title><description>Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topological density. For typical gauge field configurations in a numerical simulation, however, quantum fluctuations dominate, and the sum of this density over the system does not generally give an integer winding. On cooling with respect to the Wilson gauge action, instanton like structures do emerge. As cooling proceeds, these objects tend shrink and finally “fall through the lattice.” Modifying the action can block the shrinking at the expense of a loss of reflection positivity. The cooling procedure is highly sensitive to the details of the initial steps, suggesting that quantum fluctuations induce a small but fundamental ambiguity in the definition of topological susceptibility.</description><subject>Anomalies</subject><subject>CHIRAL SYMMETRY</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>COOLING</subject><subject>DENSITY</subject><subject>DIRAC OPERATORS</subject><subject>FERMIONS</subject><subject>Fluctuation</subject><subject>FLUCTUATIONS</subject><subject>Gages</subject><subject>Gauge field topology</subject><subject>Gauges</subject><subject>Lattice theory</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MATHEMATICS</subject><subject>PHYSICAL PROPERTIES</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUANTUM OPERATORS</subject><subject>Quantum physics</subject><subject>REFLECTION</subject><subject>SIMULATION</subject><subject>SYMMETRY</subject><subject>TOPOLOGY</subject><subject>VARIATIONS</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9giGFia4EtixxYTqviSKrF0YLMc99I6SuMQp0j99ziEiYHpdKfnPd09hFwDTYACv68T7bokpT99QgFOyAyo5DHN2McpmVFKsziXwM_Jhfc1DUTOxIzQx9btdWPRL6KtPmwxqiw2m2hwnWvc9riIdBu6HUaNHgZr8JKcVbrxePVb52T9_LRevsar95e35eMqNpnIh5hjmmlGy4xXAiQzLNdlWRTATEplziE1Ja2gyhAMS3kpJNelNKwsMK-qFLI5uZ3WOj9Y5Y0d0OyMa1s0g0qBFVKIPFB3E9X17vOAflB76w02jW7RHbwSHBjnGS0CefOHrN2hb8MHSuSCS0hBBggmyPTO-x4r1fV2r_ujAqpGzapWQbMaNY-jIDFkHqYMBhlfFvvxWGwNbmw_3rpx9p_0NxYsgik</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Creutz, Michael</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20110401</creationdate><title>Anomalies, gauge field topology, and the lattice</title><author>Creutz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-6e23a50b36f8195c54abb7715c2094612cb0f1f3e1c526b896ab9c5b7e4ff213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anomalies</topic><topic>CHIRAL SYMMETRY</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>COOLING</topic><topic>DENSITY</topic><topic>DIRAC OPERATORS</topic><topic>FERMIONS</topic><topic>Fluctuation</topic><topic>FLUCTUATIONS</topic><topic>Gages</topic><topic>Gauge field topology</topic><topic>Gauges</topic><topic>Lattice theory</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MATHEMATICS</topic><topic>PHYSICAL PROPERTIES</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUANTUM OPERATORS</topic><topic>Quantum physics</topic><topic>REFLECTION</topic><topic>SIMULATION</topic><topic>SYMMETRY</topic><topic>TOPOLOGY</topic><topic>VARIATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creutz, Michael</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creutz, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomalies, gauge field topology, and the lattice</atitle><jtitle>Annals of physics</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>326</volume><issue>4</issue><spage>911</spage><epage>925</epage><pages>911-925</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topological density. For typical gauge field configurations in a numerical simulation, however, quantum fluctuations dominate, and the sum of this density over the system does not generally give an integer winding. On cooling with respect to the Wilson gauge action, instanton like structures do emerge. As cooling proceeds, these objects tend shrink and finally “fall through the lattice.” Modifying the action can block the shrinking at the expense of a loss of reflection positivity. The cooling procedure is highly sensitive to the details of the initial steps, suggesting that quantum fluctuations induce a small but fundamental ambiguity in the definition of topological susceptibility.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2010.10.011</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2011-04, Vol.326 (4), p.911-925
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_21579884
source ScienceDirect Journals (5 years ago - present)
subjects Anomalies
CHIRAL SYMMETRY
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPUTERIZED SIMULATION
COOLING
DENSITY
DIRAC OPERATORS
FERMIONS
Fluctuation
FLUCTUATIONS
Gages
Gauge field topology
Gauges
Lattice theory
Lattices
Mathematical models
MATHEMATICAL OPERATORS
MATHEMATICS
PHYSICAL PROPERTIES
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
QUANTUM OPERATORS
Quantum physics
REFLECTION
SIMULATION
SYMMETRY
TOPOLOGY
VARIATIONS
title Anomalies, gauge field topology, and the lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomalies,%20gauge%20field%20topology,%20and%20the%20lattice&rft.jtitle=Annals%20of%20physics&rft.au=Creutz,%20Michael&rft.date=2011-04-01&rft.volume=326&rft.issue=4&rft.spage=911&rft.epage=925&rft.pages=911-925&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2010.10.011&rft_dat=%3Cproquest_osti_%3E861566307%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848691219&rft_id=info:pmid/&rft_els_id=S0003491610001880&rfr_iscdi=true