Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers

Epitaxially stacked tunnel-junction laser hetero structures were grown by hydride metalorganic vapor-phase epitaxy in the system of AlGaAs/GaAs/In GaAs alloys. Based on such structures, mesa stripe lasers with an aperture of 150 s- 7 m were fabricated. The possibility of controlling the lasing wavel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2010-06, Vol.44 (6), p.805-807
Hauptverfasser: Vinokurov, D. A., Ladugin, M. A., Lyutetskii, A. V., Marmalyuk, A. A., Petrunov, A. N., Pikhtin, N. A., Slipchenko, S. O., Sokolova, Z. N., Stankevich, A. L., Fetisova, N. V., Shashkin, I. S., Averkiev, N. S., Tarasov, I. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807
container_issue 6
container_start_page 805
container_title Semiconductors (Woodbury, N.Y.)
container_volume 44
creator Vinokurov, D. A.
Ladugin, M. A.
Lyutetskii, A. V.
Marmalyuk, A. A.
Petrunov, A. N.
Pikhtin, N. A.
Slipchenko, S. O.
Sokolova, Z. N.
Stankevich, A. L.
Fetisova, N. V.
Shashkin, I. S.
Averkiev, N. S.
Tarasov, I. S.
description Epitaxially stacked tunnel-junction laser hetero structures were grown by hydride metalorganic vapor-phase epitaxy in the system of AlGaAs/GaAs/In GaAs alloys. Based on such structures, mesa stripe lasers with an aperture of 150 s- 7 m were fabricated. The possibility of controlling the lasing wavelength by varying the active region thickness in each tunnel-junction laser structure was demonstrated. Independent two-band lasing at wavelengths of 914 and 925 nm (the difference frequency is 2.3 THz) was achieved at a maximum optical radiation power of 20 W in each band of the epitaxially stacked tunnel-junction semiconductor laser.
doi_str_mv 10.1134/S1063782610060199
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21562273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A360994279</galeid><sourcerecordid>A360994279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-3782a366736201e684306e8d5793cc593d06c29bb22e6afced07c508392020313</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hV4tzhJG3aHKeJLzGJA-McZak7MrpkSlIB_55W5YaEfLBlv0_y2oRcU1hQyovbVwqCVzUTFEAAlfKEzChIyEVRydOxFjwf5-fkIsY9AKV1WczI8-bT51vtmqzT0bpdZl2GR5v0l9Vd953FpM0HNlnqncMu3_fOJOtdFvFgjXdNb5IPI4shXpKzVncRr37znLzd321Wj_n65eFptVznhpdlykebmgtRccGAoqgLDgLrpqwkN6aUvAFhmNxuGUOhW4MNVKaEmksGDDjlc3Izvetjsioam9C8D2YcmqQYLQVjFR9Ui0m10x0q61qfgjZDNJN1bO3QX3IBUhZs-HtO6ASY4GMM2KpjsAcdvhUFNR5Z_TnywLCJiYPW7TCove-DG7b_B_oBOfV8uA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers</title><source>Springer Nature - Complete Springer Journals</source><creator>Vinokurov, D. A. ; Ladugin, M. A. ; Lyutetskii, A. V. ; Marmalyuk, A. A. ; Petrunov, A. N. ; Pikhtin, N. A. ; Slipchenko, S. O. ; Sokolova, Z. N. ; Stankevich, A. L. ; Fetisova, N. V. ; Shashkin, I. S. ; Averkiev, N. S. ; Tarasov, I. S.</creator><creatorcontrib>Vinokurov, D. A. ; Ladugin, M. A. ; Lyutetskii, A. V. ; Marmalyuk, A. A. ; Petrunov, A. N. ; Pikhtin, N. A. ; Slipchenko, S. O. ; Sokolova, Z. N. ; Stankevich, A. L. ; Fetisova, N. V. ; Shashkin, I. S. ; Averkiev, N. S. ; Tarasov, I. S.</creatorcontrib><description>Epitaxially stacked tunnel-junction laser hetero structures were grown by hydride metalorganic vapor-phase epitaxy in the system of AlGaAs/GaAs/In GaAs alloys. Based on such structures, mesa stripe lasers with an aperture of 150 s- 7 m were fabricated. The possibility of controlling the lasing wavelength by varying the active region thickness in each tunnel-junction laser structure was demonstrated. Independent two-band lasing at wavelengths of 914 and 925 nm (the difference frequency is 2.3 THz) was achieved at a maximum optical radiation power of 20 W in each band of the epitaxially stacked tunnel-junction semiconductor laser.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782610060199</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>ALLOYS ; ALUMINIUM ARSENIDES ; ALUMINIUM COMPOUNDS ; APERTURES ; ARSENIC COMPOUNDS ; ARSENIDES ; CRYSTAL GROWTH METHODS ; DIMENSIONS ; EPITAXY ; GALLIUM ARSENIDES ; GALLIUM COMPOUNDS ; HYDRIDES ; HYDROGEN COMPOUNDS ; LASERS ; Magnetic Materials ; Magnetism ; MATERIALS SCIENCE ; Nuclear radiation ; OPENINGS ; Physics ; Physics and Astronomy ; Physics of Semiconductor Devices ; PNICTIDES ; SEMICONDUCTOR DEVICES ; SEMICONDUCTOR LASERS ; Semiconductors ; SOLID STATE LASERS ; SUPERCONDUCTING JUNCTIONS ; THICKNESS ; TUNNEL EFFECT ; Tunnels ; VAPOR PHASE EPITAXY ; Waveguides ; WAVELENGTHS</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2010-06, Vol.44 (6), p.805-807</ispartof><rights>Pleiades Publishing, Ltd. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-3782a366736201e684306e8d5793cc593d06c29bb22e6afced07c508392020313</citedby><cites>FETCH-LOGICAL-c355t-3782a366736201e684306e8d5793cc593d06c29bb22e6afced07c508392020313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782610060199$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782610060199$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21562273$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinokurov, D. A.</creatorcontrib><creatorcontrib>Ladugin, M. A.</creatorcontrib><creatorcontrib>Lyutetskii, A. V.</creatorcontrib><creatorcontrib>Marmalyuk, A. A.</creatorcontrib><creatorcontrib>Petrunov, A. N.</creatorcontrib><creatorcontrib>Pikhtin, N. A.</creatorcontrib><creatorcontrib>Slipchenko, S. O.</creatorcontrib><creatorcontrib>Sokolova, Z. N.</creatorcontrib><creatorcontrib>Stankevich, A. L.</creatorcontrib><creatorcontrib>Fetisova, N. V.</creatorcontrib><creatorcontrib>Shashkin, I. S.</creatorcontrib><creatorcontrib>Averkiev, N. S.</creatorcontrib><creatorcontrib>Tarasov, I. S.</creatorcontrib><title>Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>Epitaxially stacked tunnel-junction laser hetero structures were grown by hydride metalorganic vapor-phase epitaxy in the system of AlGaAs/GaAs/In GaAs alloys. Based on such structures, mesa stripe lasers with an aperture of 150 s- 7 m were fabricated. The possibility of controlling the lasing wavelength by varying the active region thickness in each tunnel-junction laser structure was demonstrated. Independent two-band lasing at wavelengths of 914 and 925 nm (the difference frequency is 2.3 THz) was achieved at a maximum optical radiation power of 20 W in each band of the epitaxially stacked tunnel-junction semiconductor laser.</description><subject>ALLOYS</subject><subject>ALUMINIUM ARSENIDES</subject><subject>ALUMINIUM COMPOUNDS</subject><subject>APERTURES</subject><subject>ARSENIC COMPOUNDS</subject><subject>ARSENIDES</subject><subject>CRYSTAL GROWTH METHODS</subject><subject>DIMENSIONS</subject><subject>EPITAXY</subject><subject>GALLIUM ARSENIDES</subject><subject>GALLIUM COMPOUNDS</subject><subject>HYDRIDES</subject><subject>HYDROGEN COMPOUNDS</subject><subject>LASERS</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>Nuclear radiation</subject><subject>OPENINGS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics of Semiconductor Devices</subject><subject>PNICTIDES</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SEMICONDUCTOR LASERS</subject><subject>Semiconductors</subject><subject>SOLID STATE LASERS</subject><subject>SUPERCONDUCTING JUNCTIONS</subject><subject>THICKNESS</subject><subject>TUNNEL EFFECT</subject><subject>Tunnels</subject><subject>VAPOR PHASE EPITAXY</subject><subject>Waveguides</subject><subject>WAVELENGTHS</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7hV4tzhJG3aHKeJLzGJA-McZak7MrpkSlIB_55W5YaEfLBlv0_y2oRcU1hQyovbVwqCVzUTFEAAlfKEzChIyEVRydOxFjwf5-fkIsY9AKV1WczI8-bT51vtmqzT0bpdZl2GR5v0l9Vd953FpM0HNlnqncMu3_fOJOtdFvFgjXdNb5IPI4shXpKzVncRr37znLzd321Wj_n65eFptVznhpdlykebmgtRccGAoqgLDgLrpqwkN6aUvAFhmNxuGUOhW4MNVKaEmksGDDjlc3Izvetjsioam9C8D2YcmqQYLQVjFR9Ui0m10x0q61qfgjZDNJN1bO3QX3IBUhZs-HtO6ASY4GMM2KpjsAcdvhUFNR5Z_TnywLCJiYPW7TCove-DG7b_B_oBOfV8uA</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Vinokurov, D. A.</creator><creator>Ladugin, M. A.</creator><creator>Lyutetskii, A. V.</creator><creator>Marmalyuk, A. A.</creator><creator>Petrunov, A. N.</creator><creator>Pikhtin, N. A.</creator><creator>Slipchenko, S. O.</creator><creator>Sokolova, Z. N.</creator><creator>Stankevich, A. L.</creator><creator>Fetisova, N. V.</creator><creator>Shashkin, I. S.</creator><creator>Averkiev, N. S.</creator><creator>Tarasov, I. S.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20100601</creationdate><title>Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers</title><author>Vinokurov, D. A. ; Ladugin, M. A. ; Lyutetskii, A. V. ; Marmalyuk, A. A. ; Petrunov, A. N. ; Pikhtin, N. A. ; Slipchenko, S. O. ; Sokolova, Z. N. ; Stankevich, A. L. ; Fetisova, N. V. ; Shashkin, I. S. ; Averkiev, N. S. ; Tarasov, I. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-3782a366736201e684306e8d5793cc593d06c29bb22e6afced07c508392020313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ALLOYS</topic><topic>ALUMINIUM ARSENIDES</topic><topic>ALUMINIUM COMPOUNDS</topic><topic>APERTURES</topic><topic>ARSENIC COMPOUNDS</topic><topic>ARSENIDES</topic><topic>CRYSTAL GROWTH METHODS</topic><topic>DIMENSIONS</topic><topic>EPITAXY</topic><topic>GALLIUM ARSENIDES</topic><topic>GALLIUM COMPOUNDS</topic><topic>HYDRIDES</topic><topic>HYDROGEN COMPOUNDS</topic><topic>LASERS</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>Nuclear radiation</topic><topic>OPENINGS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics of Semiconductor Devices</topic><topic>PNICTIDES</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SEMICONDUCTOR LASERS</topic><topic>Semiconductors</topic><topic>SOLID STATE LASERS</topic><topic>SUPERCONDUCTING JUNCTIONS</topic><topic>THICKNESS</topic><topic>TUNNEL EFFECT</topic><topic>Tunnels</topic><topic>VAPOR PHASE EPITAXY</topic><topic>Waveguides</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinokurov, D. A.</creatorcontrib><creatorcontrib>Ladugin, M. A.</creatorcontrib><creatorcontrib>Lyutetskii, A. V.</creatorcontrib><creatorcontrib>Marmalyuk, A. A.</creatorcontrib><creatorcontrib>Petrunov, A. N.</creatorcontrib><creatorcontrib>Pikhtin, N. A.</creatorcontrib><creatorcontrib>Slipchenko, S. O.</creatorcontrib><creatorcontrib>Sokolova, Z. N.</creatorcontrib><creatorcontrib>Stankevich, A. L.</creatorcontrib><creatorcontrib>Fetisova, N. V.</creatorcontrib><creatorcontrib>Shashkin, I. S.</creatorcontrib><creatorcontrib>Averkiev, N. S.</creatorcontrib><creatorcontrib>Tarasov, I. S.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinokurov, D. A.</au><au>Ladugin, M. A.</au><au>Lyutetskii, A. V.</au><au>Marmalyuk, A. A.</au><au>Petrunov, A. N.</au><au>Pikhtin, N. A.</au><au>Slipchenko, S. O.</au><au>Sokolova, Z. N.</au><au>Stankevich, A. L.</au><au>Fetisova, N. V.</au><au>Shashkin, I. S.</au><au>Averkiev, N. S.</au><au>Tarasov, I. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>44</volume><issue>6</issue><spage>805</spage><epage>807</epage><pages>805-807</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>Epitaxially stacked tunnel-junction laser hetero structures were grown by hydride metalorganic vapor-phase epitaxy in the system of AlGaAs/GaAs/In GaAs alloys. Based on such structures, mesa stripe lasers with an aperture of 150 s- 7 m were fabricated. The possibility of controlling the lasing wavelength by varying the active region thickness in each tunnel-junction laser structure was demonstrated. Independent two-band lasing at wavelengths of 914 and 925 nm (the difference frequency is 2.3 THz) was achieved at a maximum optical radiation power of 20 W in each band of the epitaxially stacked tunnel-junction semiconductor laser.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1063782610060199</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2010-06, Vol.44 (6), p.805-807
issn 1063-7826
1090-6479
language eng
recordid cdi_osti_scitechconnect_21562273
source Springer Nature - Complete Springer Journals
subjects ALLOYS
ALUMINIUM ARSENIDES
ALUMINIUM COMPOUNDS
APERTURES
ARSENIC COMPOUNDS
ARSENIDES
CRYSTAL GROWTH METHODS
DIMENSIONS
EPITAXY
GALLIUM ARSENIDES
GALLIUM COMPOUNDS
HYDRIDES
HYDROGEN COMPOUNDS
LASERS
Magnetic Materials
Magnetism
MATERIALS SCIENCE
Nuclear radiation
OPENINGS
Physics
Physics and Astronomy
Physics of Semiconductor Devices
PNICTIDES
SEMICONDUCTOR DEVICES
SEMICONDUCTOR LASERS
Semiconductors
SOLID STATE LASERS
SUPERCONDUCTING JUNCTIONS
THICKNESS
TUNNEL EFFECT
Tunnels
VAPOR PHASE EPITAXY
Waveguides
WAVELENGTHS
title Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-band%20lasing%20in%20epitaxially%20stacked%20tunnel-junction%20semiconductor%20lasers&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Vinokurov,%20D.%20A.&rft.date=2010-06-01&rft.volume=44&rft.issue=6&rft.spage=805&rft.epage=807&rft.pages=805-807&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782610060199&rft_dat=%3Cgale_osti_%3EA360994279%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A360994279&rfr_iscdi=true