Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers
Epitaxially stacked tunnel-junction laser hetero structures were grown by hydride metalorganic vapor-phase epitaxy in the system of AlGaAs/GaAs/In GaAs alloys. Based on such structures, mesa stripe lasers with an aperture of 150 s- 7 m were fabricated. The possibility of controlling the lasing wavel...
Gespeichert in:
Veröffentlicht in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2010-06, Vol.44 (6), p.805-807 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 807 |
---|---|
container_issue | 6 |
container_start_page | 805 |
container_title | Semiconductors (Woodbury, N.Y.) |
container_volume | 44 |
creator | Vinokurov, D. A. Ladugin, M. A. Lyutetskii, A. V. Marmalyuk, A. A. Petrunov, A. N. Pikhtin, N. A. Slipchenko, S. O. Sokolova, Z. N. Stankevich, A. L. Fetisova, N. V. Shashkin, I. S. Averkiev, N. S. Tarasov, I. S. |
description | Epitaxially stacked tunnel-junction laser hetero structures were grown by hydride metalorganic vapor-phase epitaxy in the system of AlGaAs/GaAs/In GaAs alloys. Based on such structures, mesa stripe lasers with an aperture of 150 s- 7 m were fabricated. The possibility of controlling the lasing wavelength by varying the active region thickness in each tunnel-junction laser structure was demonstrated. Independent two-band lasing at wavelengths of 914 and 925 nm (the difference frequency is 2.3 THz) was achieved at a maximum optical radiation power of 20 W in each band of the epitaxially stacked tunnel-junction semiconductor laser. |
doi_str_mv | 10.1134/S1063782610060199 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21562273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A360994279</galeid><sourcerecordid>A360994279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-3782a366736201e684306e8d5793cc593d06c29bb22e6afced07c508392020313</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hV4tzhJG3aHKeJLzGJA-McZak7MrpkSlIB_55W5YaEfLBlv0_y2oRcU1hQyovbVwqCVzUTFEAAlfKEzChIyEVRydOxFjwf5-fkIsY9AKV1WczI8-bT51vtmqzT0bpdZl2GR5v0l9Vd953FpM0HNlnqncMu3_fOJOtdFvFgjXdNb5IPI4shXpKzVncRr37znLzd321Wj_n65eFptVznhpdlykebmgtRccGAoqgLDgLrpqwkN6aUvAFhmNxuGUOhW4MNVKaEmksGDDjlc3Izvetjsioam9C8D2YcmqQYLQVjFR9Ui0m10x0q61qfgjZDNJN1bO3QX3IBUhZs-HtO6ASY4GMM2KpjsAcdvhUFNR5Z_TnywLCJiYPW7TCove-DG7b_B_oBOfV8uA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers</title><source>Springer Nature - Complete Springer Journals</source><creator>Vinokurov, D. A. ; Ladugin, M. A. ; Lyutetskii, A. V. ; Marmalyuk, A. A. ; Petrunov, A. N. ; Pikhtin, N. A. ; Slipchenko, S. O. ; Sokolova, Z. N. ; Stankevich, A. L. ; Fetisova, N. V. ; Shashkin, I. S. ; Averkiev, N. S. ; Tarasov, I. S.</creator><creatorcontrib>Vinokurov, D. A. ; Ladugin, M. A. ; Lyutetskii, A. V. ; Marmalyuk, A. A. ; Petrunov, A. N. ; Pikhtin, N. A. ; Slipchenko, S. O. ; Sokolova, Z. N. ; Stankevich, A. L. ; Fetisova, N. V. ; Shashkin, I. S. ; Averkiev, N. S. ; Tarasov, I. S.</creatorcontrib><description>Epitaxially stacked tunnel-junction laser hetero structures were grown by hydride metalorganic vapor-phase epitaxy in the system of AlGaAs/GaAs/In GaAs alloys. Based on such structures, mesa stripe lasers with an aperture of 150 s- 7 m were fabricated. The possibility of controlling the lasing wavelength by varying the active region thickness in each tunnel-junction laser structure was demonstrated. Independent two-band lasing at wavelengths of 914 and 925 nm (the difference frequency is 2.3 THz) was achieved at a maximum optical radiation power of 20 W in each band of the epitaxially stacked tunnel-junction semiconductor laser.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782610060199</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>ALLOYS ; ALUMINIUM ARSENIDES ; ALUMINIUM COMPOUNDS ; APERTURES ; ARSENIC COMPOUNDS ; ARSENIDES ; CRYSTAL GROWTH METHODS ; DIMENSIONS ; EPITAXY ; GALLIUM ARSENIDES ; GALLIUM COMPOUNDS ; HYDRIDES ; HYDROGEN COMPOUNDS ; LASERS ; Magnetic Materials ; Magnetism ; MATERIALS SCIENCE ; Nuclear radiation ; OPENINGS ; Physics ; Physics and Astronomy ; Physics of Semiconductor Devices ; PNICTIDES ; SEMICONDUCTOR DEVICES ; SEMICONDUCTOR LASERS ; Semiconductors ; SOLID STATE LASERS ; SUPERCONDUCTING JUNCTIONS ; THICKNESS ; TUNNEL EFFECT ; Tunnels ; VAPOR PHASE EPITAXY ; Waveguides ; WAVELENGTHS</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2010-06, Vol.44 (6), p.805-807</ispartof><rights>Pleiades Publishing, Ltd. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-3782a366736201e684306e8d5793cc593d06c29bb22e6afced07c508392020313</citedby><cites>FETCH-LOGICAL-c355t-3782a366736201e684306e8d5793cc593d06c29bb22e6afced07c508392020313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782610060199$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782610060199$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21562273$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinokurov, D. A.</creatorcontrib><creatorcontrib>Ladugin, M. A.</creatorcontrib><creatorcontrib>Lyutetskii, A. V.</creatorcontrib><creatorcontrib>Marmalyuk, A. A.</creatorcontrib><creatorcontrib>Petrunov, A. N.</creatorcontrib><creatorcontrib>Pikhtin, N. A.</creatorcontrib><creatorcontrib>Slipchenko, S. O.</creatorcontrib><creatorcontrib>Sokolova, Z. N.</creatorcontrib><creatorcontrib>Stankevich, A. L.</creatorcontrib><creatorcontrib>Fetisova, N. V.</creatorcontrib><creatorcontrib>Shashkin, I. S.</creatorcontrib><creatorcontrib>Averkiev, N. S.</creatorcontrib><creatorcontrib>Tarasov, I. S.</creatorcontrib><title>Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>Epitaxially stacked tunnel-junction laser hetero structures were grown by hydride metalorganic vapor-phase epitaxy in the system of AlGaAs/GaAs/In GaAs alloys. Based on such structures, mesa stripe lasers with an aperture of 150 s- 7 m were fabricated. The possibility of controlling the lasing wavelength by varying the active region thickness in each tunnel-junction laser structure was demonstrated. Independent two-band lasing at wavelengths of 914 and 925 nm (the difference frequency is 2.3 THz) was achieved at a maximum optical radiation power of 20 W in each band of the epitaxially stacked tunnel-junction semiconductor laser.</description><subject>ALLOYS</subject><subject>ALUMINIUM ARSENIDES</subject><subject>ALUMINIUM COMPOUNDS</subject><subject>APERTURES</subject><subject>ARSENIC COMPOUNDS</subject><subject>ARSENIDES</subject><subject>CRYSTAL GROWTH METHODS</subject><subject>DIMENSIONS</subject><subject>EPITAXY</subject><subject>GALLIUM ARSENIDES</subject><subject>GALLIUM COMPOUNDS</subject><subject>HYDRIDES</subject><subject>HYDROGEN COMPOUNDS</subject><subject>LASERS</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>MATERIALS SCIENCE</subject><subject>Nuclear radiation</subject><subject>OPENINGS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics of Semiconductor Devices</subject><subject>PNICTIDES</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SEMICONDUCTOR LASERS</subject><subject>Semiconductors</subject><subject>SOLID STATE LASERS</subject><subject>SUPERCONDUCTING JUNCTIONS</subject><subject>THICKNESS</subject><subject>TUNNEL EFFECT</subject><subject>Tunnels</subject><subject>VAPOR PHASE EPITAXY</subject><subject>Waveguides</subject><subject>WAVELENGTHS</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7hV4tzhJG3aHKeJLzGJA-McZak7MrpkSlIB_55W5YaEfLBlv0_y2oRcU1hQyovbVwqCVzUTFEAAlfKEzChIyEVRydOxFjwf5-fkIsY9AKV1WczI8-bT51vtmqzT0bpdZl2GR5v0l9Vd953FpM0HNlnqncMu3_fOJOtdFvFgjXdNb5IPI4shXpKzVncRr37znLzd321Wj_n65eFptVznhpdlykebmgtRccGAoqgLDgLrpqwkN6aUvAFhmNxuGUOhW4MNVKaEmksGDDjlc3Izvetjsioam9C8D2YcmqQYLQVjFR9Ui0m10x0q61qfgjZDNJN1bO3QX3IBUhZs-HtO6ASY4GMM2KpjsAcdvhUFNR5Z_TnywLCJiYPW7TCove-DG7b_B_oBOfV8uA</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Vinokurov, D. A.</creator><creator>Ladugin, M. A.</creator><creator>Lyutetskii, A. V.</creator><creator>Marmalyuk, A. A.</creator><creator>Petrunov, A. N.</creator><creator>Pikhtin, N. A.</creator><creator>Slipchenko, S. O.</creator><creator>Sokolova, Z. N.</creator><creator>Stankevich, A. L.</creator><creator>Fetisova, N. V.</creator><creator>Shashkin, I. S.</creator><creator>Averkiev, N. S.</creator><creator>Tarasov, I. S.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20100601</creationdate><title>Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers</title><author>Vinokurov, D. A. ; Ladugin, M. A. ; Lyutetskii, A. V. ; Marmalyuk, A. A. ; Petrunov, A. N. ; Pikhtin, N. A. ; Slipchenko, S. O. ; Sokolova, Z. N. ; Stankevich, A. L. ; Fetisova, N. V. ; Shashkin, I. S. ; Averkiev, N. S. ; Tarasov, I. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-3782a366736201e684306e8d5793cc593d06c29bb22e6afced07c508392020313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ALLOYS</topic><topic>ALUMINIUM ARSENIDES</topic><topic>ALUMINIUM COMPOUNDS</topic><topic>APERTURES</topic><topic>ARSENIC COMPOUNDS</topic><topic>ARSENIDES</topic><topic>CRYSTAL GROWTH METHODS</topic><topic>DIMENSIONS</topic><topic>EPITAXY</topic><topic>GALLIUM ARSENIDES</topic><topic>GALLIUM COMPOUNDS</topic><topic>HYDRIDES</topic><topic>HYDROGEN COMPOUNDS</topic><topic>LASERS</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>MATERIALS SCIENCE</topic><topic>Nuclear radiation</topic><topic>OPENINGS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics of Semiconductor Devices</topic><topic>PNICTIDES</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SEMICONDUCTOR LASERS</topic><topic>Semiconductors</topic><topic>SOLID STATE LASERS</topic><topic>SUPERCONDUCTING JUNCTIONS</topic><topic>THICKNESS</topic><topic>TUNNEL EFFECT</topic><topic>Tunnels</topic><topic>VAPOR PHASE EPITAXY</topic><topic>Waveguides</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinokurov, D. A.</creatorcontrib><creatorcontrib>Ladugin, M. A.</creatorcontrib><creatorcontrib>Lyutetskii, A. V.</creatorcontrib><creatorcontrib>Marmalyuk, A. A.</creatorcontrib><creatorcontrib>Petrunov, A. N.</creatorcontrib><creatorcontrib>Pikhtin, N. A.</creatorcontrib><creatorcontrib>Slipchenko, S. O.</creatorcontrib><creatorcontrib>Sokolova, Z. N.</creatorcontrib><creatorcontrib>Stankevich, A. L.</creatorcontrib><creatorcontrib>Fetisova, N. V.</creatorcontrib><creatorcontrib>Shashkin, I. S.</creatorcontrib><creatorcontrib>Averkiev, N. S.</creatorcontrib><creatorcontrib>Tarasov, I. S.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinokurov, D. A.</au><au>Ladugin, M. A.</au><au>Lyutetskii, A. V.</au><au>Marmalyuk, A. A.</au><au>Petrunov, A. N.</au><au>Pikhtin, N. A.</au><au>Slipchenko, S. O.</au><au>Sokolova, Z. N.</au><au>Stankevich, A. L.</au><au>Fetisova, N. V.</au><au>Shashkin, I. S.</au><au>Averkiev, N. S.</au><au>Tarasov, I. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>44</volume><issue>6</issue><spage>805</spage><epage>807</epage><pages>805-807</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>Epitaxially stacked tunnel-junction laser hetero structures were grown by hydride metalorganic vapor-phase epitaxy in the system of AlGaAs/GaAs/In GaAs alloys. Based on such structures, mesa stripe lasers with an aperture of 150 s- 7 m were fabricated. The possibility of controlling the lasing wavelength by varying the active region thickness in each tunnel-junction laser structure was demonstrated. Independent two-band lasing at wavelengths of 914 and 925 nm (the difference frequency is 2.3 THz) was achieved at a maximum optical radiation power of 20 W in each band of the epitaxially stacked tunnel-junction semiconductor laser.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1063782610060199</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7826 |
ispartof | Semiconductors (Woodbury, N.Y.), 2010-06, Vol.44 (6), p.805-807 |
issn | 1063-7826 1090-6479 |
language | eng |
recordid | cdi_osti_scitechconnect_21562273 |
source | Springer Nature - Complete Springer Journals |
subjects | ALLOYS ALUMINIUM ARSENIDES ALUMINIUM COMPOUNDS APERTURES ARSENIC COMPOUNDS ARSENIDES CRYSTAL GROWTH METHODS DIMENSIONS EPITAXY GALLIUM ARSENIDES GALLIUM COMPOUNDS HYDRIDES HYDROGEN COMPOUNDS LASERS Magnetic Materials Magnetism MATERIALS SCIENCE Nuclear radiation OPENINGS Physics Physics and Astronomy Physics of Semiconductor Devices PNICTIDES SEMICONDUCTOR DEVICES SEMICONDUCTOR LASERS Semiconductors SOLID STATE LASERS SUPERCONDUCTING JUNCTIONS THICKNESS TUNNEL EFFECT Tunnels VAPOR PHASE EPITAXY Waveguides WAVELENGTHS |
title | Two-band lasing in epitaxially stacked tunnel-junction semiconductor lasers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-band%20lasing%20in%20epitaxially%20stacked%20tunnel-junction%20semiconductor%20lasers&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Vinokurov,%20D.%20A.&rft.date=2010-06-01&rft.volume=44&rft.issue=6&rft.spage=805&rft.epage=807&rft.pages=805-807&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782610060199&rft_dat=%3Cgale_osti_%3EA360994279%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A360994279&rfr_iscdi=true |