Concerted electron and proton transfer in ionic crystals mapped by femtosecond x-ray powder diffraction

X-ray powder diffraction, a fundamental technique of structure research in physics, chemistry, and biology, is extended into the femtosecond time domain of atomic motions. This allows for mapping (macro)molecular structure generated by basic chemical and biological processes and for deriving transie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2010-08, Vol.133 (6), p.064509-064509
Hauptverfasser: Woerner, Michael, Zamponi, Flavio, Ansari, Zunaira, Dreyer, Jens, Freyer, Benjamin, Prémont-Schwarz, Mirabelle, Elsaesser, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 064509
container_issue 6
container_start_page 064509
container_title The Journal of chemical physics
container_volume 133
creator Woerner, Michael
Zamponi, Flavio
Ansari, Zunaira
Dreyer, Jens
Freyer, Benjamin
Prémont-Schwarz, Mirabelle
Elsaesser, Thomas
description X-ray powder diffraction, a fundamental technique of structure research in physics, chemistry, and biology, is extended into the femtosecond time domain of atomic motions. This allows for mapping (macro)molecular structure generated by basic chemical and biological processes and for deriving transient electronic charge density maps. In the experiments, the transient intensity and angular positions of up to 20 Debye Scherrer reflections from a polycrystalline powder are measured and atomic positions and charge density maps are determined with a combined spatial and temporal resolutions of 30 pm and 100 fs. We present evidence for the so far unknown concerted transfer of electrons and protons in a prototype material, the hydrogen-bonded ionic ammonium sulfate [(NH(4))(2)SO(4)]. Photoexcitation of ammonium sulfate induces a sub-100 fs electron transfer from the sulfate groups into a highly confined electron channel along the c-axis of the unit cell. The latter geometry is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps derived from the diffraction data display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. Our results set the stage for femtosecond structure studies in a wide class of (bio)molecular materials.
doi_str_mv 10.1063/1.3469779
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21559900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>748953227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-5401d6e9b0a3b8f835cdc87220933ae455c0348390697e10e0dd599456db01bf3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMo7rp68A9IwIN4qE6apmmOsvgFghc9hzSZamXb1CSL7r83squnmcPzDPO-hJwyuGJQ82t2xataSan2yJxBowpZK9gnc4CSFaqGekaOYvwAACbL6pDMSpAghZRz8rb0o8WQ0FFcoU3Bj9SMjk7Bp7ymYMbYYaD9SHs_9pbasInJrCIdzDRlq93QDofkI1qfve8imA2d_JfLkuu7LhibsnlMDrps4cluLsjr3e3L8qF4er5_XN48FbZiPBWiAuZqVC0Y3jZdw4V1tpFlCYpzg5UQFnjVcAU5LzJAcE4oVYnatcDaji_I-fauj6nX0fYJ7Xv-bMzZdMlEhgEydbGlcszPNcakhz5aXK3MiH4dtawaJXhZykxebkkbfIwBOz2FfjBhoxno3_I107vyM3u2u7puB3T_5F_b_Ae2r353</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748953227</pqid></control><display><type>article</type><title>Concerted electron and proton transfer in ionic crystals mapped by femtosecond x-ray powder diffraction</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Woerner, Michael ; Zamponi, Flavio ; Ansari, Zunaira ; Dreyer, Jens ; Freyer, Benjamin ; Prémont-Schwarz, Mirabelle ; Elsaesser, Thomas</creator><creatorcontrib>Woerner, Michael ; Zamponi, Flavio ; Ansari, Zunaira ; Dreyer, Jens ; Freyer, Benjamin ; Prémont-Schwarz, Mirabelle ; Elsaesser, Thomas</creatorcontrib><description>X-ray powder diffraction, a fundamental technique of structure research in physics, chemistry, and biology, is extended into the femtosecond time domain of atomic motions. This allows for mapping (macro)molecular structure generated by basic chemical and biological processes and for deriving transient electronic charge density maps. In the experiments, the transient intensity and angular positions of up to 20 Debye Scherrer reflections from a polycrystalline powder are measured and atomic positions and charge density maps are determined with a combined spatial and temporal resolutions of 30 pm and 100 fs. We present evidence for the so far unknown concerted transfer of electrons and protons in a prototype material, the hydrogen-bonded ionic ammonium sulfate [(NH(4))(2)SO(4)]. Photoexcitation of ammonium sulfate induces a sub-100 fs electron transfer from the sulfate groups into a highly confined electron channel along the c-axis of the unit cell. The latter geometry is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps derived from the diffraction data display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. Our results set the stage for femtosecond structure studies in a wide class of (bio)molecular materials.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3469779</identifier><identifier>PMID: 20707577</identifier><language>eng</language><publisher>United States</publisher><subject>AMMONIUM COMPOUNDS ; Ammonium Sulfate - chemistry ; AMMONIUM SULFATES ; BARYONS ; CHARGE DENSITY ; CHARGE EXCHANGE ; CHEMISTRY ; COHERENT SCATTERING ; CRYSTALS ; DIFFRACTION ; ELECTRON TRANSFER ; Electron Transport ; ELECTRONS ; ELEMENTARY PARTICLES ; ELEMENTS ; Energy Transfer ; FERMIONS ; HADRONS ; HYDROGEN ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; ION EXCHANGE ; IONIC CRYSTALS ; LEPTONS ; MATERIALS SCIENCE ; MOLECULAR STRUCTURE ; NONMETALS ; NUCLEONS ; OXYGEN COMPOUNDS ; PERIODICITY ; PHOTOCHEMISTRY ; POLYCRYSTALS ; Powders ; PROTONS ; REFLECTION ; RESOLUTION ; SCATTERING ; SULFATES ; SULFUR COMPOUNDS ; TIME DEPENDENCE ; TRANSIENTS ; VARIATIONS ; X-RAY DIFFRACTION ; X-Ray Diffraction - methods</subject><ispartof>The Journal of chemical physics, 2010-08, Vol.133 (6), p.064509-064509</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-5401d6e9b0a3b8f835cdc87220933ae455c0348390697e10e0dd599456db01bf3</citedby><cites>FETCH-LOGICAL-c413t-5401d6e9b0a3b8f835cdc87220933ae455c0348390697e10e0dd599456db01bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20707577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21559900$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Woerner, Michael</creatorcontrib><creatorcontrib>Zamponi, Flavio</creatorcontrib><creatorcontrib>Ansari, Zunaira</creatorcontrib><creatorcontrib>Dreyer, Jens</creatorcontrib><creatorcontrib>Freyer, Benjamin</creatorcontrib><creatorcontrib>Prémont-Schwarz, Mirabelle</creatorcontrib><creatorcontrib>Elsaesser, Thomas</creatorcontrib><title>Concerted electron and proton transfer in ionic crystals mapped by femtosecond x-ray powder diffraction</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>X-ray powder diffraction, a fundamental technique of structure research in physics, chemistry, and biology, is extended into the femtosecond time domain of atomic motions. This allows for mapping (macro)molecular structure generated by basic chemical and biological processes and for deriving transient electronic charge density maps. In the experiments, the transient intensity and angular positions of up to 20 Debye Scherrer reflections from a polycrystalline powder are measured and atomic positions and charge density maps are determined with a combined spatial and temporal resolutions of 30 pm and 100 fs. We present evidence for the so far unknown concerted transfer of electrons and protons in a prototype material, the hydrogen-bonded ionic ammonium sulfate [(NH(4))(2)SO(4)]. Photoexcitation of ammonium sulfate induces a sub-100 fs electron transfer from the sulfate groups into a highly confined electron channel along the c-axis of the unit cell. The latter geometry is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps derived from the diffraction data display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. Our results set the stage for femtosecond structure studies in a wide class of (bio)molecular materials.</description><subject>AMMONIUM COMPOUNDS</subject><subject>Ammonium Sulfate - chemistry</subject><subject>AMMONIUM SULFATES</subject><subject>BARYONS</subject><subject>CHARGE DENSITY</subject><subject>CHARGE EXCHANGE</subject><subject>CHEMISTRY</subject><subject>COHERENT SCATTERING</subject><subject>CRYSTALS</subject><subject>DIFFRACTION</subject><subject>ELECTRON TRANSFER</subject><subject>Electron Transport</subject><subject>ELECTRONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>ELEMENTS</subject><subject>Energy Transfer</subject><subject>FERMIONS</subject><subject>HADRONS</subject><subject>HYDROGEN</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>ION EXCHANGE</subject><subject>IONIC CRYSTALS</subject><subject>LEPTONS</subject><subject>MATERIALS SCIENCE</subject><subject>MOLECULAR STRUCTURE</subject><subject>NONMETALS</subject><subject>NUCLEONS</subject><subject>OXYGEN COMPOUNDS</subject><subject>PERIODICITY</subject><subject>PHOTOCHEMISTRY</subject><subject>POLYCRYSTALS</subject><subject>Powders</subject><subject>PROTONS</subject><subject>REFLECTION</subject><subject>RESOLUTION</subject><subject>SCATTERING</subject><subject>SULFATES</subject><subject>SULFUR COMPOUNDS</subject><subject>TIME DEPENDENCE</subject><subject>TRANSIENTS</subject><subject>VARIATIONS</subject><subject>X-RAY DIFFRACTION</subject><subject>X-Ray Diffraction - methods</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1LxDAQhoMo7rp68A9IwIN4qE6apmmOsvgFghc9hzSZamXb1CSL7r83squnmcPzDPO-hJwyuGJQ82t2xataSan2yJxBowpZK9gnc4CSFaqGekaOYvwAACbL6pDMSpAghZRz8rb0o8WQ0FFcoU3Bj9SMjk7Bp7ymYMbYYaD9SHs_9pbasInJrCIdzDRlq93QDofkI1qfve8imA2d_JfLkuu7LhibsnlMDrps4cluLsjr3e3L8qF4er5_XN48FbZiPBWiAuZqVC0Y3jZdw4V1tpFlCYpzg5UQFnjVcAU5LzJAcE4oVYnatcDaji_I-fauj6nX0fYJ7Xv-bMzZdMlEhgEydbGlcszPNcakhz5aXK3MiH4dtawaJXhZykxebkkbfIwBOz2FfjBhoxno3_I107vyM3u2u7puB3T_5F_b_Ae2r353</recordid><startdate>20100814</startdate><enddate>20100814</enddate><creator>Woerner, Michael</creator><creator>Zamponi, Flavio</creator><creator>Ansari, Zunaira</creator><creator>Dreyer, Jens</creator><creator>Freyer, Benjamin</creator><creator>Prémont-Schwarz, Mirabelle</creator><creator>Elsaesser, Thomas</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20100814</creationdate><title>Concerted electron and proton transfer in ionic crystals mapped by femtosecond x-ray powder diffraction</title><author>Woerner, Michael ; Zamponi, Flavio ; Ansari, Zunaira ; Dreyer, Jens ; Freyer, Benjamin ; Prémont-Schwarz, Mirabelle ; Elsaesser, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-5401d6e9b0a3b8f835cdc87220933ae455c0348390697e10e0dd599456db01bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>AMMONIUM COMPOUNDS</topic><topic>Ammonium Sulfate - chemistry</topic><topic>AMMONIUM SULFATES</topic><topic>BARYONS</topic><topic>CHARGE DENSITY</topic><topic>CHARGE EXCHANGE</topic><topic>CHEMISTRY</topic><topic>COHERENT SCATTERING</topic><topic>CRYSTALS</topic><topic>DIFFRACTION</topic><topic>ELECTRON TRANSFER</topic><topic>Electron Transport</topic><topic>ELECTRONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>ELEMENTS</topic><topic>Energy Transfer</topic><topic>FERMIONS</topic><topic>HADRONS</topic><topic>HYDROGEN</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>ION EXCHANGE</topic><topic>IONIC CRYSTALS</topic><topic>LEPTONS</topic><topic>MATERIALS SCIENCE</topic><topic>MOLECULAR STRUCTURE</topic><topic>NONMETALS</topic><topic>NUCLEONS</topic><topic>OXYGEN COMPOUNDS</topic><topic>PERIODICITY</topic><topic>PHOTOCHEMISTRY</topic><topic>POLYCRYSTALS</topic><topic>Powders</topic><topic>PROTONS</topic><topic>REFLECTION</topic><topic>RESOLUTION</topic><topic>SCATTERING</topic><topic>SULFATES</topic><topic>SULFUR COMPOUNDS</topic><topic>TIME DEPENDENCE</topic><topic>TRANSIENTS</topic><topic>VARIATIONS</topic><topic>X-RAY DIFFRACTION</topic><topic>X-Ray Diffraction - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woerner, Michael</creatorcontrib><creatorcontrib>Zamponi, Flavio</creatorcontrib><creatorcontrib>Ansari, Zunaira</creatorcontrib><creatorcontrib>Dreyer, Jens</creatorcontrib><creatorcontrib>Freyer, Benjamin</creatorcontrib><creatorcontrib>Prémont-Schwarz, Mirabelle</creatorcontrib><creatorcontrib>Elsaesser, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woerner, Michael</au><au>Zamponi, Flavio</au><au>Ansari, Zunaira</au><au>Dreyer, Jens</au><au>Freyer, Benjamin</au><au>Prémont-Schwarz, Mirabelle</au><au>Elsaesser, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concerted electron and proton transfer in ionic crystals mapped by femtosecond x-ray powder diffraction</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2010-08-14</date><risdate>2010</risdate><volume>133</volume><issue>6</issue><spage>064509</spage><epage>064509</epage><pages>064509-064509</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>X-ray powder diffraction, a fundamental technique of structure research in physics, chemistry, and biology, is extended into the femtosecond time domain of atomic motions. This allows for mapping (macro)molecular structure generated by basic chemical and biological processes and for deriving transient electronic charge density maps. In the experiments, the transient intensity and angular positions of up to 20 Debye Scherrer reflections from a polycrystalline powder are measured and atomic positions and charge density maps are determined with a combined spatial and temporal resolutions of 30 pm and 100 fs. We present evidence for the so far unknown concerted transfer of electrons and protons in a prototype material, the hydrogen-bonded ionic ammonium sulfate [(NH(4))(2)SO(4)]. Photoexcitation of ammonium sulfate induces a sub-100 fs electron transfer from the sulfate groups into a highly confined electron channel along the c-axis of the unit cell. The latter geometry is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps derived from the diffraction data display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. Our results set the stage for femtosecond structure studies in a wide class of (bio)molecular materials.</abstract><cop>United States</cop><pmid>20707577</pmid><doi>10.1063/1.3469779</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2010-08, Vol.133 (6), p.064509-064509
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_21559900
source MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects AMMONIUM COMPOUNDS
Ammonium Sulfate - chemistry
AMMONIUM SULFATES
BARYONS
CHARGE DENSITY
CHARGE EXCHANGE
CHEMISTRY
COHERENT SCATTERING
CRYSTALS
DIFFRACTION
ELECTRON TRANSFER
Electron Transport
ELECTRONS
ELEMENTARY PARTICLES
ELEMENTS
Energy Transfer
FERMIONS
HADRONS
HYDROGEN
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
ION EXCHANGE
IONIC CRYSTALS
LEPTONS
MATERIALS SCIENCE
MOLECULAR STRUCTURE
NONMETALS
NUCLEONS
OXYGEN COMPOUNDS
PERIODICITY
PHOTOCHEMISTRY
POLYCRYSTALS
Powders
PROTONS
REFLECTION
RESOLUTION
SCATTERING
SULFATES
SULFUR COMPOUNDS
TIME DEPENDENCE
TRANSIENTS
VARIATIONS
X-RAY DIFFRACTION
X-Ray Diffraction - methods
title Concerted electron and proton transfer in ionic crystals mapped by femtosecond x-ray powder diffraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concerted%20electron%20and%20proton%20transfer%20in%20ionic%20crystals%20mapped%20by%20femtosecond%20x-ray%20powder%20diffraction&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Woerner,%20Michael&rft.date=2010-08-14&rft.volume=133&rft.issue=6&rft.spage=064509&rft.epage=064509&rft.pages=064509-064509&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.3469779&rft_dat=%3Cproquest_osti_%3E748953227%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748953227&rft_id=info:pmid/20707577&rfr_iscdi=true