Silicon diffusion in aluminum for rear passivated solar cells
We show that the lateral spread of silicon in a screen-printed aluminum layer increases by ( 1.50 ± 0.06 ) μ m / ° C , when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2011-04, Vol.98 (15), p.153508-153508-3 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153508-3 |
---|---|
container_issue | 15 |
container_start_page | 153508 |
container_title | Applied physics letters |
container_volume | 98 |
creator | Urrejola, Elias Peter, Kristian Plagwitz, Heiko Schubert, Gunnar |
description | We show that the lateral spread of silicon in a screen-printed aluminum layer increases by
(
1.50
±
0.06
)
μ
m
/
°
C
, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer. |
doi_str_mv | 10.1063/1.3579541 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21518391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-88f2f6a1dbe29650bd4c95446f39d6d18af2bc4658b850ae54026bd9c53a03f53</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4ufIOCKxcdc3KaNF0oyOANBlyo65DmgpFOOySt4NuboYM7V-fCx885HyGXQFdABd7ACnnd8AqOyAJoXZcIII_JglKKpWg4nJKzlL7yyBnigty-hS6YoS9s8H5KIXehL3Q3bUM_bQs_xCI6HYudTil869HZIg1dXhjXdemcnHjdJXdxqEvy8fjwvn4uN69PL-v7TWkQ2FhK6ZkXGmzrWCM4bW1l8o2V8NhYYUFqz1pTCS5byal2vKJMtLYxHDVFz3FJrubcIY1BJRNGZz7z1b0zo2LAQWIDmbqeKROHlKLzahfDVscfBVTt7ShQBzuZvZvZfZge89__wwdF6k-RCj3-Ap6qa6U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Silicon diffusion in aluminum for rear passivated solar cells</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Urrejola, Elias ; Peter, Kristian ; Plagwitz, Heiko ; Schubert, Gunnar</creator><creatorcontrib>Urrejola, Elias ; Peter, Kristian ; Plagwitz, Heiko ; Schubert, Gunnar</creatorcontrib><description>We show that the lateral spread of silicon in a screen-printed aluminum layer increases by
(
1.50
±
0.06
)
μ
m
/
°
C
, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3579541</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ALUMINIUM ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; COOLING ; DIFFUSION ; DIRECT ENERGY CONVERTERS ; ELEMENTS ; EUTECTICS ; LAYERS ; MATERIALS SCIENCE ; METALS ; PEAKS ; PHOTOELECTRIC CELLS ; PHOTOVOLTAIC CELLS ; SCREENS ; SEMIMETALS ; SILICON ; SILICON SOLAR CELLS ; SOLAR CELLS ; SOLAR EQUIPMENT</subject><ispartof>Applied physics letters, 2011-04, Vol.98 (15), p.153508-153508-3</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-88f2f6a1dbe29650bd4c95446f39d6d18af2bc4658b850ae54026bd9c53a03f53</citedby><cites>FETCH-LOGICAL-c312t-88f2f6a1dbe29650bd4c95446f39d6d18af2bc4658b850ae54026bd9c53a03f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3579541$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21518391$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Urrejola, Elias</creatorcontrib><creatorcontrib>Peter, Kristian</creatorcontrib><creatorcontrib>Plagwitz, Heiko</creatorcontrib><creatorcontrib>Schubert, Gunnar</creatorcontrib><title>Silicon diffusion in aluminum for rear passivated solar cells</title><title>Applied physics letters</title><description>We show that the lateral spread of silicon in a screen-printed aluminum layer increases by
(
1.50
±
0.06
)
μ
m
/
°
C
, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.</description><subject>ALUMINIUM</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>COOLING</subject><subject>DIFFUSION</subject><subject>DIRECT ENERGY CONVERTERS</subject><subject>ELEMENTS</subject><subject>EUTECTICS</subject><subject>LAYERS</subject><subject>MATERIALS SCIENCE</subject><subject>METALS</subject><subject>PEAKS</subject><subject>PHOTOELECTRIC CELLS</subject><subject>PHOTOVOLTAIC CELLS</subject><subject>SCREENS</subject><subject>SEMIMETALS</subject><subject>SILICON</subject><subject>SILICON SOLAR CELLS</subject><subject>SOLAR CELLS</subject><subject>SOLAR EQUIPMENT</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOI4ufIOCKxcdc3KaNF0oyOANBlyo65DmgpFOOySt4NuboYM7V-fCx885HyGXQFdABd7ACnnd8AqOyAJoXZcIII_JglKKpWg4nJKzlL7yyBnigty-hS6YoS9s8H5KIXehL3Q3bUM_bQs_xCI6HYudTil869HZIg1dXhjXdemcnHjdJXdxqEvy8fjwvn4uN69PL-v7TWkQ2FhK6ZkXGmzrWCM4bW1l8o2V8NhYYUFqz1pTCS5byal2vKJMtLYxHDVFz3FJrubcIY1BJRNGZz7z1b0zo2LAQWIDmbqeKROHlKLzahfDVscfBVTt7ShQBzuZvZvZfZge89__wwdF6k-RCj3-Ap6qa6U</recordid><startdate>20110411</startdate><enddate>20110411</enddate><creator>Urrejola, Elias</creator><creator>Peter, Kristian</creator><creator>Plagwitz, Heiko</creator><creator>Schubert, Gunnar</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20110411</creationdate><title>Silicon diffusion in aluminum for rear passivated solar cells</title><author>Urrejola, Elias ; Peter, Kristian ; Plagwitz, Heiko ; Schubert, Gunnar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-88f2f6a1dbe29650bd4c95446f39d6d18af2bc4658b850ae54026bd9c53a03f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ALUMINIUM</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>COOLING</topic><topic>DIFFUSION</topic><topic>DIRECT ENERGY CONVERTERS</topic><topic>ELEMENTS</topic><topic>EUTECTICS</topic><topic>LAYERS</topic><topic>MATERIALS SCIENCE</topic><topic>METALS</topic><topic>PEAKS</topic><topic>PHOTOELECTRIC CELLS</topic><topic>PHOTOVOLTAIC CELLS</topic><topic>SCREENS</topic><topic>SEMIMETALS</topic><topic>SILICON</topic><topic>SILICON SOLAR CELLS</topic><topic>SOLAR CELLS</topic><topic>SOLAR EQUIPMENT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urrejola, Elias</creatorcontrib><creatorcontrib>Peter, Kristian</creatorcontrib><creatorcontrib>Plagwitz, Heiko</creatorcontrib><creatorcontrib>Schubert, Gunnar</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urrejola, Elias</au><au>Peter, Kristian</au><au>Plagwitz, Heiko</au><au>Schubert, Gunnar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon diffusion in aluminum for rear passivated solar cells</atitle><jtitle>Applied physics letters</jtitle><date>2011-04-11</date><risdate>2011</risdate><volume>98</volume><issue>15</issue><spage>153508</spage><epage>153508-3</epage><pages>153508-153508-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We show that the lateral spread of silicon in a screen-printed aluminum layer increases by
(
1.50
±
0.06
)
μ
m
/
°
C
, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3579541</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2011-04, Vol.98 (15), p.153508-153508-3 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_21518391 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | ALUMINIUM CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY COOLING DIFFUSION DIRECT ENERGY CONVERTERS ELEMENTS EUTECTICS LAYERS MATERIALS SCIENCE METALS PEAKS PHOTOELECTRIC CELLS PHOTOVOLTAIC CELLS SCREENS SEMIMETALS SILICON SILICON SOLAR CELLS SOLAR CELLS SOLAR EQUIPMENT |
title | Silicon diffusion in aluminum for rear passivated solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20diffusion%20in%20aluminum%20for%20rear%20passivated%20solar%20cells&rft.jtitle=Applied%20physics%20letters&rft.au=Urrejola,%20Elias&rft.date=2011-04-11&rft.volume=98&rft.issue=15&rft.spage=153508&rft.epage=153508-3&rft.pages=153508-153508-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3579541&rft_dat=%3Cscitation_osti_%3Eapl%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |