Silicon diffusion in aluminum for rear passivated solar cells

We show that the lateral spread of silicon in a screen-printed aluminum layer increases by ( 1.50 ± 0.06 )   μ m / ° C , when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2011-04, Vol.98 (15), p.153508-153508-3
Hauptverfasser: Urrejola, Elias, Peter, Kristian, Plagwitz, Heiko, Schubert, Gunnar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153508-3
container_issue 15
container_start_page 153508
container_title Applied physics letters
container_volume 98
creator Urrejola, Elias
Peter, Kristian
Plagwitz, Heiko
Schubert, Gunnar
description We show that the lateral spread of silicon in a screen-printed aluminum layer increases by ( 1.50 ± 0.06 )   μ m / ° C , when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.
doi_str_mv 10.1063/1.3579541
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21518391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-88f2f6a1dbe29650bd4c95446f39d6d18af2bc4658b850ae54026bd9c53a03f53</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4ufIOCKxcdc3KaNF0oyOANBlyo65DmgpFOOySt4NuboYM7V-fCx885HyGXQFdABd7ACnnd8AqOyAJoXZcIII_JglKKpWg4nJKzlL7yyBnigty-hS6YoS9s8H5KIXehL3Q3bUM_bQs_xCI6HYudTil869HZIg1dXhjXdemcnHjdJXdxqEvy8fjwvn4uN69PL-v7TWkQ2FhK6ZkXGmzrWCM4bW1l8o2V8NhYYUFqz1pTCS5byal2vKJMtLYxHDVFz3FJrubcIY1BJRNGZz7z1b0zo2LAQWIDmbqeKROHlKLzahfDVscfBVTt7ShQBzuZvZvZfZge89__wwdF6k-RCj3-Ap6qa6U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Silicon diffusion in aluminum for rear passivated solar cells</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Urrejola, Elias ; Peter, Kristian ; Plagwitz, Heiko ; Schubert, Gunnar</creator><creatorcontrib>Urrejola, Elias ; Peter, Kristian ; Plagwitz, Heiko ; Schubert, Gunnar</creatorcontrib><description>We show that the lateral spread of silicon in a screen-printed aluminum layer increases by ( 1.50 ± 0.06 )   μ m / ° C , when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3579541</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>ALUMINIUM ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; COOLING ; DIFFUSION ; DIRECT ENERGY CONVERTERS ; ELEMENTS ; EUTECTICS ; LAYERS ; MATERIALS SCIENCE ; METALS ; PEAKS ; PHOTOELECTRIC CELLS ; PHOTOVOLTAIC CELLS ; SCREENS ; SEMIMETALS ; SILICON ; SILICON SOLAR CELLS ; SOLAR CELLS ; SOLAR EQUIPMENT</subject><ispartof>Applied physics letters, 2011-04, Vol.98 (15), p.153508-153508-3</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-88f2f6a1dbe29650bd4c95446f39d6d18af2bc4658b850ae54026bd9c53a03f53</citedby><cites>FETCH-LOGICAL-c312t-88f2f6a1dbe29650bd4c95446f39d6d18af2bc4658b850ae54026bd9c53a03f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3579541$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21518391$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Urrejola, Elias</creatorcontrib><creatorcontrib>Peter, Kristian</creatorcontrib><creatorcontrib>Plagwitz, Heiko</creatorcontrib><creatorcontrib>Schubert, Gunnar</creatorcontrib><title>Silicon diffusion in aluminum for rear passivated solar cells</title><title>Applied physics letters</title><description>We show that the lateral spread of silicon in a screen-printed aluminum layer increases by ( 1.50 ± 0.06 )   μ m / ° C , when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.</description><subject>ALUMINIUM</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>COOLING</subject><subject>DIFFUSION</subject><subject>DIRECT ENERGY CONVERTERS</subject><subject>ELEMENTS</subject><subject>EUTECTICS</subject><subject>LAYERS</subject><subject>MATERIALS SCIENCE</subject><subject>METALS</subject><subject>PEAKS</subject><subject>PHOTOELECTRIC CELLS</subject><subject>PHOTOVOLTAIC CELLS</subject><subject>SCREENS</subject><subject>SEMIMETALS</subject><subject>SILICON</subject><subject>SILICON SOLAR CELLS</subject><subject>SOLAR CELLS</subject><subject>SOLAR EQUIPMENT</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOI4ufIOCKxcdc3KaNF0oyOANBlyo65DmgpFOOySt4NuboYM7V-fCx885HyGXQFdABd7ACnnd8AqOyAJoXZcIII_JglKKpWg4nJKzlL7yyBnigty-hS6YoS9s8H5KIXehL3Q3bUM_bQs_xCI6HYudTil869HZIg1dXhjXdemcnHjdJXdxqEvy8fjwvn4uN69PL-v7TWkQ2FhK6ZkXGmzrWCM4bW1l8o2V8NhYYUFqz1pTCS5byal2vKJMtLYxHDVFz3FJrubcIY1BJRNGZz7z1b0zo2LAQWIDmbqeKROHlKLzahfDVscfBVTt7ShQBzuZvZvZfZge89__wwdF6k-RCj3-Ap6qa6U</recordid><startdate>20110411</startdate><enddate>20110411</enddate><creator>Urrejola, Elias</creator><creator>Peter, Kristian</creator><creator>Plagwitz, Heiko</creator><creator>Schubert, Gunnar</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20110411</creationdate><title>Silicon diffusion in aluminum for rear passivated solar cells</title><author>Urrejola, Elias ; Peter, Kristian ; Plagwitz, Heiko ; Schubert, Gunnar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-88f2f6a1dbe29650bd4c95446f39d6d18af2bc4658b850ae54026bd9c53a03f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ALUMINIUM</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>COOLING</topic><topic>DIFFUSION</topic><topic>DIRECT ENERGY CONVERTERS</topic><topic>ELEMENTS</topic><topic>EUTECTICS</topic><topic>LAYERS</topic><topic>MATERIALS SCIENCE</topic><topic>METALS</topic><topic>PEAKS</topic><topic>PHOTOELECTRIC CELLS</topic><topic>PHOTOVOLTAIC CELLS</topic><topic>SCREENS</topic><topic>SEMIMETALS</topic><topic>SILICON</topic><topic>SILICON SOLAR CELLS</topic><topic>SOLAR CELLS</topic><topic>SOLAR EQUIPMENT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urrejola, Elias</creatorcontrib><creatorcontrib>Peter, Kristian</creatorcontrib><creatorcontrib>Plagwitz, Heiko</creatorcontrib><creatorcontrib>Schubert, Gunnar</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urrejola, Elias</au><au>Peter, Kristian</au><au>Plagwitz, Heiko</au><au>Schubert, Gunnar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon diffusion in aluminum for rear passivated solar cells</atitle><jtitle>Applied physics letters</jtitle><date>2011-04-11</date><risdate>2011</risdate><volume>98</volume><issue>15</issue><spage>153508</spage><epage>153508-3</epage><pages>153508-153508-3</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We show that the lateral spread of silicon in a screen-printed aluminum layer increases by ( 1.50 ± 0.06 )   μ m / ° C , when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3579541</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2011-04, Vol.98 (15), p.153508-153508-3
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_21518391
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects ALUMINIUM
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
COOLING
DIFFUSION
DIRECT ENERGY CONVERTERS
ELEMENTS
EUTECTICS
LAYERS
MATERIALS SCIENCE
METALS
PEAKS
PHOTOELECTRIC CELLS
PHOTOVOLTAIC CELLS
SCREENS
SEMIMETALS
SILICON
SILICON SOLAR CELLS
SOLAR CELLS
SOLAR EQUIPMENT
title Silicon diffusion in aluminum for rear passivated solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20diffusion%20in%20aluminum%20for%20rear%20passivated%20solar%20cells&rft.jtitle=Applied%20physics%20letters&rft.au=Urrejola,%20Elias&rft.date=2011-04-11&rft.volume=98&rft.issue=15&rft.spage=153508&rft.epage=153508-3&rft.pages=153508-153508-3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3579541&rft_dat=%3Cscitation_osti_%3Eapl%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true