PHYSICAL MODEL ASSISTED PROBABILITY OF DETECTION IN NONDESTRUCTIVE EVALUATION
Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or flaws such as cracks inside parts or structures during manufacturing or for products in service. The standard statistical model is a simple empirical linear regression between the (possibly transfo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 1335 |
creator | Li, M Meeker, W Q Thompson, R B |
description | Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or flaws such as cracks inside parts or structures during manufacturing or for products in service. The standard statistical model is a simple empirical linear regression between the (possibly transformed) signal response variables and the (possibly transformed) explanatory variables. For some applications, such a simple empirical approach is inadequate. An important alternative approach is to use knowledge of the physics of the inspection process to provide information about the underlying relationship between the response and explanatory variables. Use of such knowledge can greatly increase the power and accuracy of the statistical analysis and enable, when needed, proper extrapolation outside the range of the observed explanatory variables. This paper describes a set of physical model-assisted analyses to study the capability of two different ultrasonic testing inspection methods to detect synthetic hard alpha inclusion and flat-bottom hole defects in a titanium forging disk. |
doi_str_mv | 10.1063/1.3592113 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21511623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448713358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e6bc24ebe5e1b62b604af2d90b07c34cf60c03c88483235c45a35bcba27fa0d53</originalsourceid><addsrcrecordid>eNotTV9vgjAcbPYnmXE-7Bs02ctecG1_bSmPCHWSIBhBM58I1JK5ONlW_P7DuHu4S-4udwg9UTKlRMIrnYIIGKVwg0ZUCOr5kspbNAl8RXwQnCil4A6NCAm4xzi8P6CJc59kQCCDgUZouVrsiiQKU7zMY53isCiSotQxXq3zWThL0qTc4XyOY13qqEzyDCcZzvIs1kW53gzOVmO9DdNNeAkf0X1bH52d_OsYbea6jBZemr9dTjzDAtp7VjaGcdtYYWkjWSMJr1u2D0hDfAPctJIYAkYproCBMFzUIBrT1Mxva7IXMEbP193O9YfKmUNvzYfpTidr-opRQalkMLRerq3v3-7nbF1ffR2cscdjfbLd2VWUc-VTAKHgD2wXWNU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1448713358</pqid></control><display><type>conference_proceeding</type><title>PHYSICAL MODEL ASSISTED PROBABILITY OF DETECTION IN NONDESTRUCTIVE EVALUATION</title><source>AIP Journals Complete</source><creator>Li, M ; Meeker, W Q ; Thompson, R B</creator><creatorcontrib>Li, M ; Meeker, W Q ; Thompson, R B</creatorcontrib><description>Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or flaws such as cracks inside parts or structures during manufacturing or for products in service. The standard statistical model is a simple empirical linear regression between the (possibly transformed) signal response variables and the (possibly transformed) explanatory variables. For some applications, such a simple empirical approach is inadequate. An important alternative approach is to use knowledge of the physics of the inspection process to provide information about the underlying relationship between the response and explanatory variables. Use of such knowledge can greatly increase the power and accuracy of the statistical analysis and enable, when needed, proper extrapolation outside the range of the observed explanatory variables. This paper describes a set of physical model-assisted analyses to study the capability of two different ultrasonic testing inspection methods to detect synthetic hard alpha inclusion and flat-bottom hole defects in a titanium forging disk.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735408883</identifier><identifier>ISBN: 0735408882</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.3592113</identifier><language>eng</language><publisher>United States</publisher><subject>ACCURACY ; ACOUSTIC TESTING ; ALLOYS ; CHEMICAL ANALYSIS ; CRACKS ; DEFECTS ; DETECTION ; ELEMENTS ; ENGINEERING ; EXTRAPOLATION ; FABRICATION ; FORGING ; INCLUSIONS ; INSPECTION ; MANUFACTURING ; MATERIALS TESTING ; MATERIALS WORKING ; MATHEMATICAL MODELS ; MATHEMATICAL SOLUTIONS ; METALS ; NONDESTRUCTIVE ANALYSIS ; NONDESTRUCTIVE TESTING ; NUMERICAL SOLUTION ; PROBABILITY ; STATISTICAL MODELS ; TESTING ; TITANIUM ; TITANIUM ALLOYS ; TRANSITION ELEMENT ALLOYS ; TRANSITION ELEMENTS ; ULTRASONIC TESTING</subject><ispartof>AIP conference proceedings, 2011, Vol.1335 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e6bc24ebe5e1b62b604af2d90b07c34cf60c03c88483235c45a35bcba27fa0d53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21511623$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, M</creatorcontrib><creatorcontrib>Meeker, W Q</creatorcontrib><creatorcontrib>Thompson, R B</creatorcontrib><title>PHYSICAL MODEL ASSISTED PROBABILITY OF DETECTION IN NONDESTRUCTIVE EVALUATION</title><title>AIP conference proceedings</title><description>Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or flaws such as cracks inside parts or structures during manufacturing or for products in service. The standard statistical model is a simple empirical linear regression between the (possibly transformed) signal response variables and the (possibly transformed) explanatory variables. For some applications, such a simple empirical approach is inadequate. An important alternative approach is to use knowledge of the physics of the inspection process to provide information about the underlying relationship between the response and explanatory variables. Use of such knowledge can greatly increase the power and accuracy of the statistical analysis and enable, when needed, proper extrapolation outside the range of the observed explanatory variables. This paper describes a set of physical model-assisted analyses to study the capability of two different ultrasonic testing inspection methods to detect synthetic hard alpha inclusion and flat-bottom hole defects in a titanium forging disk.</description><subject>ACCURACY</subject><subject>ACOUSTIC TESTING</subject><subject>ALLOYS</subject><subject>CHEMICAL ANALYSIS</subject><subject>CRACKS</subject><subject>DEFECTS</subject><subject>DETECTION</subject><subject>ELEMENTS</subject><subject>ENGINEERING</subject><subject>EXTRAPOLATION</subject><subject>FABRICATION</subject><subject>FORGING</subject><subject>INCLUSIONS</subject><subject>INSPECTION</subject><subject>MANUFACTURING</subject><subject>MATERIALS TESTING</subject><subject>MATERIALS WORKING</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>METALS</subject><subject>NONDESTRUCTIVE ANALYSIS</subject><subject>NONDESTRUCTIVE TESTING</subject><subject>NUMERICAL SOLUTION</subject><subject>PROBABILITY</subject><subject>STATISTICAL MODELS</subject><subject>TESTING</subject><subject>TITANIUM</subject><subject>TITANIUM ALLOYS</subject><subject>TRANSITION ELEMENT ALLOYS</subject><subject>TRANSITION ELEMENTS</subject><subject>ULTRASONIC TESTING</subject><issn>0094-243X</issn><issn>1551-7616</issn><isbn>9780735408883</isbn><isbn>0735408882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotTV9vgjAcbPYnmXE-7Bs02ctecG1_bSmPCHWSIBhBM58I1JK5ONlW_P7DuHu4S-4udwg9UTKlRMIrnYIIGKVwg0ZUCOr5kspbNAl8RXwQnCil4A6NCAm4xzi8P6CJc59kQCCDgUZouVrsiiQKU7zMY53isCiSotQxXq3zWThL0qTc4XyOY13qqEzyDCcZzvIs1kW53gzOVmO9DdNNeAkf0X1bH52d_OsYbea6jBZemr9dTjzDAtp7VjaGcdtYYWkjWSMJr1u2D0hDfAPctJIYAkYproCBMFzUIBrT1Mxva7IXMEbP193O9YfKmUNvzYfpTidr-opRQalkMLRerq3v3-7nbF1ffR2cscdjfbLd2VWUc-VTAKHgD2wXWNU</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Li, M</creator><creator>Meeker, W Q</creator><creator>Thompson, R B</creator><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20110101</creationdate><title>PHYSICAL MODEL ASSISTED PROBABILITY OF DETECTION IN NONDESTRUCTIVE EVALUATION</title><author>Li, M ; Meeker, W Q ; Thompson, R B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e6bc24ebe5e1b62b604af2d90b07c34cf60c03c88483235c45a35bcba27fa0d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ACCURACY</topic><topic>ACOUSTIC TESTING</topic><topic>ALLOYS</topic><topic>CHEMICAL ANALYSIS</topic><topic>CRACKS</topic><topic>DEFECTS</topic><topic>DETECTION</topic><topic>ELEMENTS</topic><topic>ENGINEERING</topic><topic>EXTRAPOLATION</topic><topic>FABRICATION</topic><topic>FORGING</topic><topic>INCLUSIONS</topic><topic>INSPECTION</topic><topic>MANUFACTURING</topic><topic>MATERIALS TESTING</topic><topic>MATERIALS WORKING</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>METALS</topic><topic>NONDESTRUCTIVE ANALYSIS</topic><topic>NONDESTRUCTIVE TESTING</topic><topic>NUMERICAL SOLUTION</topic><topic>PROBABILITY</topic><topic>STATISTICAL MODELS</topic><topic>TESTING</topic><topic>TITANIUM</topic><topic>TITANIUM ALLOYS</topic><topic>TRANSITION ELEMENT ALLOYS</topic><topic>TRANSITION ELEMENTS</topic><topic>ULTRASONIC TESTING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, M</creatorcontrib><creatorcontrib>Meeker, W Q</creatorcontrib><creatorcontrib>Thompson, R B</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, M</au><au>Meeker, W Q</au><au>Thompson, R B</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>PHYSICAL MODEL ASSISTED PROBABILITY OF DETECTION IN NONDESTRUCTIVE EVALUATION</atitle><btitle>AIP conference proceedings</btitle><date>2011-01-01</date><risdate>2011</risdate><volume>1335</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><isbn>9780735408883</isbn><isbn>0735408882</isbn><abstract>Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or flaws such as cracks inside parts or structures during manufacturing or for products in service. The standard statistical model is a simple empirical linear regression between the (possibly transformed) signal response variables and the (possibly transformed) explanatory variables. For some applications, such a simple empirical approach is inadequate. An important alternative approach is to use knowledge of the physics of the inspection process to provide information about the underlying relationship between the response and explanatory variables. Use of such knowledge can greatly increase the power and accuracy of the statistical analysis and enable, when needed, proper extrapolation outside the range of the observed explanatory variables. This paper describes a set of physical model-assisted analyses to study the capability of two different ultrasonic testing inspection methods to detect synthetic hard alpha inclusion and flat-bottom hole defects in a titanium forging disk.</abstract><cop>United States</cop><doi>10.1063/1.3592113</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2011, Vol.1335 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_21511623 |
source | AIP Journals Complete |
subjects | ACCURACY ACOUSTIC TESTING ALLOYS CHEMICAL ANALYSIS CRACKS DEFECTS DETECTION ELEMENTS ENGINEERING EXTRAPOLATION FABRICATION FORGING INCLUSIONS INSPECTION MANUFACTURING MATERIALS TESTING MATERIALS WORKING MATHEMATICAL MODELS MATHEMATICAL SOLUTIONS METALS NONDESTRUCTIVE ANALYSIS NONDESTRUCTIVE TESTING NUMERICAL SOLUTION PROBABILITY STATISTICAL MODELS TESTING TITANIUM TITANIUM ALLOYS TRANSITION ELEMENT ALLOYS TRANSITION ELEMENTS ULTRASONIC TESTING |
title | PHYSICAL MODEL ASSISTED PROBABILITY OF DETECTION IN NONDESTRUCTIVE EVALUATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=PHYSICAL%20MODEL%20ASSISTED%20PROBABILITY%20OF%20DETECTION%20IN%20NONDESTRUCTIVE%20EVALUATION&rft.btitle=AIP%20conference%20proceedings&rft.au=Li,%20M&rft.date=2011-01-01&rft.volume=1335&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.isbn=9780735408883&rft.isbn_list=0735408882&rft_id=info:doi/10.1063/1.3592113&rft_dat=%3Cproquest_osti_%3E1448713358%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448713358&rft_id=info:pmid/&rfr_iscdi=true |