PHYSICAL MODEL ASSISTED PROBABILITY OF DETECTION IN NONDESTRUCTIVE EVALUATION

Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or flaws such as cracks inside parts or structures during manufacturing or for products in service. The standard statistical model is a simple empirical linear regression between the (possibly transfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, M, Meeker, W Q, Thompson, R B
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1335
creator Li, M
Meeker, W Q
Thompson, R B
description Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or flaws such as cracks inside parts or structures during manufacturing or for products in service. The standard statistical model is a simple empirical linear regression between the (possibly transformed) signal response variables and the (possibly transformed) explanatory variables. For some applications, such a simple empirical approach is inadequate. An important alternative approach is to use knowledge of the physics of the inspection process to provide information about the underlying relationship between the response and explanatory variables. Use of such knowledge can greatly increase the power and accuracy of the statistical analysis and enable, when needed, proper extrapolation outside the range of the observed explanatory variables. This paper describes a set of physical model-assisted analyses to study the capability of two different ultrasonic testing inspection methods to detect synthetic hard alpha inclusion and flat-bottom hole defects in a titanium forging disk.
doi_str_mv 10.1063/1.3592113
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21511623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448713358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e6bc24ebe5e1b62b604af2d90b07c34cf60c03c88483235c45a35bcba27fa0d53</originalsourceid><addsrcrecordid>eNotTV9vgjAcbPYnmXE-7Bs02ctecG1_bSmPCHWSIBhBM58I1JK5ONlW_P7DuHu4S-4udwg9UTKlRMIrnYIIGKVwg0ZUCOr5kspbNAl8RXwQnCil4A6NCAm4xzi8P6CJc59kQCCDgUZouVrsiiQKU7zMY53isCiSotQxXq3zWThL0qTc4XyOY13qqEzyDCcZzvIs1kW53gzOVmO9DdNNeAkf0X1bH52d_OsYbea6jBZemr9dTjzDAtp7VjaGcdtYYWkjWSMJr1u2D0hDfAPctJIYAkYproCBMFzUIBrT1Mxva7IXMEbP193O9YfKmUNvzYfpTidr-opRQalkMLRerq3v3-7nbF1ffR2cscdjfbLd2VWUc-VTAKHgD2wXWNU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1448713358</pqid></control><display><type>conference_proceeding</type><title>PHYSICAL MODEL ASSISTED PROBABILITY OF DETECTION IN NONDESTRUCTIVE EVALUATION</title><source>AIP Journals Complete</source><creator>Li, M ; Meeker, W Q ; Thompson, R B</creator><creatorcontrib>Li, M ; Meeker, W Q ; Thompson, R B</creatorcontrib><description>Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or flaws such as cracks inside parts or structures during manufacturing or for products in service. The standard statistical model is a simple empirical linear regression between the (possibly transformed) signal response variables and the (possibly transformed) explanatory variables. For some applications, such a simple empirical approach is inadequate. An important alternative approach is to use knowledge of the physics of the inspection process to provide information about the underlying relationship between the response and explanatory variables. Use of such knowledge can greatly increase the power and accuracy of the statistical analysis and enable, when needed, proper extrapolation outside the range of the observed explanatory variables. This paper describes a set of physical model-assisted analyses to study the capability of two different ultrasonic testing inspection methods to detect synthetic hard alpha inclusion and flat-bottom hole defects in a titanium forging disk.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735408883</identifier><identifier>ISBN: 0735408882</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.3592113</identifier><language>eng</language><publisher>United States</publisher><subject>ACCURACY ; ACOUSTIC TESTING ; ALLOYS ; CHEMICAL ANALYSIS ; CRACKS ; DEFECTS ; DETECTION ; ELEMENTS ; ENGINEERING ; EXTRAPOLATION ; FABRICATION ; FORGING ; INCLUSIONS ; INSPECTION ; MANUFACTURING ; MATERIALS TESTING ; MATERIALS WORKING ; MATHEMATICAL MODELS ; MATHEMATICAL SOLUTIONS ; METALS ; NONDESTRUCTIVE ANALYSIS ; NONDESTRUCTIVE TESTING ; NUMERICAL SOLUTION ; PROBABILITY ; STATISTICAL MODELS ; TESTING ; TITANIUM ; TITANIUM ALLOYS ; TRANSITION ELEMENT ALLOYS ; TRANSITION ELEMENTS ; ULTRASONIC TESTING</subject><ispartof>AIP conference proceedings, 2011, Vol.1335 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e6bc24ebe5e1b62b604af2d90b07c34cf60c03c88483235c45a35bcba27fa0d53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21511623$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, M</creatorcontrib><creatorcontrib>Meeker, W Q</creatorcontrib><creatorcontrib>Thompson, R B</creatorcontrib><title>PHYSICAL MODEL ASSISTED PROBABILITY OF DETECTION IN NONDESTRUCTIVE EVALUATION</title><title>AIP conference proceedings</title><description>Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or flaws such as cracks inside parts or structures during manufacturing or for products in service. The standard statistical model is a simple empirical linear regression between the (possibly transformed) signal response variables and the (possibly transformed) explanatory variables. For some applications, such a simple empirical approach is inadequate. An important alternative approach is to use knowledge of the physics of the inspection process to provide information about the underlying relationship between the response and explanatory variables. Use of such knowledge can greatly increase the power and accuracy of the statistical analysis and enable, when needed, proper extrapolation outside the range of the observed explanatory variables. This paper describes a set of physical model-assisted analyses to study the capability of two different ultrasonic testing inspection methods to detect synthetic hard alpha inclusion and flat-bottom hole defects in a titanium forging disk.</description><subject>ACCURACY</subject><subject>ACOUSTIC TESTING</subject><subject>ALLOYS</subject><subject>CHEMICAL ANALYSIS</subject><subject>CRACKS</subject><subject>DEFECTS</subject><subject>DETECTION</subject><subject>ELEMENTS</subject><subject>ENGINEERING</subject><subject>EXTRAPOLATION</subject><subject>FABRICATION</subject><subject>FORGING</subject><subject>INCLUSIONS</subject><subject>INSPECTION</subject><subject>MANUFACTURING</subject><subject>MATERIALS TESTING</subject><subject>MATERIALS WORKING</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>METALS</subject><subject>NONDESTRUCTIVE ANALYSIS</subject><subject>NONDESTRUCTIVE TESTING</subject><subject>NUMERICAL SOLUTION</subject><subject>PROBABILITY</subject><subject>STATISTICAL MODELS</subject><subject>TESTING</subject><subject>TITANIUM</subject><subject>TITANIUM ALLOYS</subject><subject>TRANSITION ELEMENT ALLOYS</subject><subject>TRANSITION ELEMENTS</subject><subject>ULTRASONIC TESTING</subject><issn>0094-243X</issn><issn>1551-7616</issn><isbn>9780735408883</isbn><isbn>0735408882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotTV9vgjAcbPYnmXE-7Bs02ctecG1_bSmPCHWSIBhBM58I1JK5ONlW_P7DuHu4S-4udwg9UTKlRMIrnYIIGKVwg0ZUCOr5kspbNAl8RXwQnCil4A6NCAm4xzi8P6CJc59kQCCDgUZouVrsiiQKU7zMY53isCiSotQxXq3zWThL0qTc4XyOY13qqEzyDCcZzvIs1kW53gzOVmO9DdNNeAkf0X1bH52d_OsYbea6jBZemr9dTjzDAtp7VjaGcdtYYWkjWSMJr1u2D0hDfAPctJIYAkYproCBMFzUIBrT1Mxva7IXMEbP193O9YfKmUNvzYfpTidr-opRQalkMLRerq3v3-7nbF1ffR2cscdjfbLd2VWUc-VTAKHgD2wXWNU</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Li, M</creator><creator>Meeker, W Q</creator><creator>Thompson, R B</creator><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20110101</creationdate><title>PHYSICAL MODEL ASSISTED PROBABILITY OF DETECTION IN NONDESTRUCTIVE EVALUATION</title><author>Li, M ; Meeker, W Q ; Thompson, R B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e6bc24ebe5e1b62b604af2d90b07c34cf60c03c88483235c45a35bcba27fa0d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ACCURACY</topic><topic>ACOUSTIC TESTING</topic><topic>ALLOYS</topic><topic>CHEMICAL ANALYSIS</topic><topic>CRACKS</topic><topic>DEFECTS</topic><topic>DETECTION</topic><topic>ELEMENTS</topic><topic>ENGINEERING</topic><topic>EXTRAPOLATION</topic><topic>FABRICATION</topic><topic>FORGING</topic><topic>INCLUSIONS</topic><topic>INSPECTION</topic><topic>MANUFACTURING</topic><topic>MATERIALS TESTING</topic><topic>MATERIALS WORKING</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>METALS</topic><topic>NONDESTRUCTIVE ANALYSIS</topic><topic>NONDESTRUCTIVE TESTING</topic><topic>NUMERICAL SOLUTION</topic><topic>PROBABILITY</topic><topic>STATISTICAL MODELS</topic><topic>TESTING</topic><topic>TITANIUM</topic><topic>TITANIUM ALLOYS</topic><topic>TRANSITION ELEMENT ALLOYS</topic><topic>TRANSITION ELEMENTS</topic><topic>ULTRASONIC TESTING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, M</creatorcontrib><creatorcontrib>Meeker, W Q</creatorcontrib><creatorcontrib>Thompson, R B</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, M</au><au>Meeker, W Q</au><au>Thompson, R B</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>PHYSICAL MODEL ASSISTED PROBABILITY OF DETECTION IN NONDESTRUCTIVE EVALUATION</atitle><btitle>AIP conference proceedings</btitle><date>2011-01-01</date><risdate>2011</risdate><volume>1335</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><isbn>9780735408883</isbn><isbn>0735408882</isbn><abstract>Nondestructive evaluation is used widely in many engineering and industrial areas to detect defects or flaws such as cracks inside parts or structures during manufacturing or for products in service. The standard statistical model is a simple empirical linear regression between the (possibly transformed) signal response variables and the (possibly transformed) explanatory variables. For some applications, such a simple empirical approach is inadequate. An important alternative approach is to use knowledge of the physics of the inspection process to provide information about the underlying relationship between the response and explanatory variables. Use of such knowledge can greatly increase the power and accuracy of the statistical analysis and enable, when needed, proper extrapolation outside the range of the observed explanatory variables. This paper describes a set of physical model-assisted analyses to study the capability of two different ultrasonic testing inspection methods to detect synthetic hard alpha inclusion and flat-bottom hole defects in a titanium forging disk.</abstract><cop>United States</cop><doi>10.1063/1.3592113</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2011, Vol.1335 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_osti_scitechconnect_21511623
source AIP Journals Complete
subjects ACCURACY
ACOUSTIC TESTING
ALLOYS
CHEMICAL ANALYSIS
CRACKS
DEFECTS
DETECTION
ELEMENTS
ENGINEERING
EXTRAPOLATION
FABRICATION
FORGING
INCLUSIONS
INSPECTION
MANUFACTURING
MATERIALS TESTING
MATERIALS WORKING
MATHEMATICAL MODELS
MATHEMATICAL SOLUTIONS
METALS
NONDESTRUCTIVE ANALYSIS
NONDESTRUCTIVE TESTING
NUMERICAL SOLUTION
PROBABILITY
STATISTICAL MODELS
TESTING
TITANIUM
TITANIUM ALLOYS
TRANSITION ELEMENT ALLOYS
TRANSITION ELEMENTS
ULTRASONIC TESTING
title PHYSICAL MODEL ASSISTED PROBABILITY OF DETECTION IN NONDESTRUCTIVE EVALUATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=PHYSICAL%20MODEL%20ASSISTED%20PROBABILITY%20OF%20DETECTION%20IN%20NONDESTRUCTIVE%20EVALUATION&rft.btitle=AIP%20conference%20proceedings&rft.au=Li,%20M&rft.date=2011-01-01&rft.volume=1335&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.isbn=9780735408883&rft.isbn_list=0735408882&rft_id=info:doi/10.1063/1.3592113&rft_dat=%3Cproquest_osti_%3E1448713358%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448713358&rft_id=info:pmid/&rfr_iscdi=true