Determination of the Absorbed Dose Rate to Water for the 18-mm Helmet of a Gamma Knife

Purpose To measure the absorbed dose rate to water of60 Co gamma rays of a Gamma Knife Model C using water-filled phantoms (WFP). Methods and Materials Spherical WFP with an equivalent water depth of 5, 7, 8, and 9 cm were constructed. The dose rates at the center of an 18-mm helmet were measured in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation oncology, biology, physics biology, physics, 2011-04, Vol.79 (5), p.1580-1587
Hauptverfasser: Chung, Hyun-Tai, Ph.D, Park, Youngho, Ph.D, Hyun, Sangil, Ph.D, Choi, Yongsoo, Ph.D, Kim, Gi Hong, M.Sc, Kim, Dong Gyu, M.D., Ph.D, Chun, Kook Jin, Ph.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1587
container_issue 5
container_start_page 1580
container_title International journal of radiation oncology, biology, physics
container_volume 79
creator Chung, Hyun-Tai, Ph.D
Park, Youngho, Ph.D
Hyun, Sangil, Ph.D
Choi, Yongsoo, Ph.D
Kim, Gi Hong, M.Sc
Kim, Dong Gyu, M.D., Ph.D
Chun, Kook Jin, Ph.D
description Purpose To measure the absorbed dose rate to water of60 Co gamma rays of a Gamma Knife Model C using water-filled phantoms (WFP). Methods and Materials Spherical WFP with an equivalent water depth of 5, 7, 8, and 9 cm were constructed. The dose rates at the center of an 18-mm helmet were measured in an 8-cm WFP (WFP-3) and two plastic phantoms. Two independent measurement systems were used: one was calibrated to an air kerma (Set I) and the other was calibrated to the absorbed dose to water (Set II). The dose rates of WFP-3 and the plastic phantoms were converted to dose rates for an 8-cm water depth using the attenuation coefficient and the equivalent water depths. Results The dose rate measured at the center of WFP-3 using Set II was 2.2% and 1.0% higher than dose rates measured at the center of the two plastic phantoms. The measured effective attenuation coefficient of Gamma Knife photon beam in WFPs was 0.0621 cm−1 . After attenuation correction, the difference between the dose rate at an 8-cm water depth measured in WFP-3 and dose rates in the plastic phantoms was smaller than the uncertainty of the measurements. Conclusions Systematic errors related to the characteristics of the phantom materials in the dose rate measurement of a Gamma Knife need to be corrected for. Correction of the dose rate using an equivalent water depth and attenuation provided results that were more consistent.
doi_str_mv 10.1016/j.ijrobp.2010.05.039
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21491681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360301610007625</els_id><sourcerecordid>857812640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-5d532ca036657d7bdb9cbbbdc34037aac426e4f057bc39beb783f5f393f53e5d3</originalsourceid><addsrcrecordid>eNqFktuKFDEQhoMo7uzoG4gERLzqsdLp9OFGWHZ1V1wQPN-FJF3Npu1OxiQj7Ntv2h4VvPEmBeH76_BXEfKEwY4Bq1-OOzsGr_e7EvIXiB3w7h7ZsLbpCi7Et_tkA7yGgmf4hJzGOAIAY031kJyU0ALwttqQLxeYMMzWqWS9o36g6QbpmY4-aOzphY9IP6iENHn6NcdABx9-Mawt5ple4TRjWnSKXqp5VvSdswM-Ig8GNUV8fIxb8vnN60_nV8X1-8u352fXhRElpEL0gpdG5T5r0fSN7nVntNa94RXwRilTlTVWA4hGG95p1E3LBzHwLr8cRc-35Nma18dkZTQ2obkx3jk0SZas6ljdsky9WKl98D8OGJOcbTQ4TcqhP0TZiqZlZZ1rbkm1kib4GAMOch_srMKtZCAX2-UoV9vlYrsEIbPtWfb0WOCgZ-z_iH77nIHnR0BFo6YhKGds_MtVDLjolkSvVg6zaT8thmUmdAZ7G5aRem__18m_Ccxknc01v-MtxtEfgssLkUzGUoL8uJzIciEsH0dTl4LfAaKttOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857812640</pqid></control><display><type>article</type><title>Determination of the Absorbed Dose Rate to Water for the 18-mm Helmet of a Gamma Knife</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chung, Hyun-Tai, Ph.D ; Park, Youngho, Ph.D ; Hyun, Sangil, Ph.D ; Choi, Yongsoo, Ph.D ; Kim, Gi Hong, M.Sc ; Kim, Dong Gyu, M.D., Ph.D ; Chun, Kook Jin, Ph.D</creator><creatorcontrib>Chung, Hyun-Tai, Ph.D ; Park, Youngho, Ph.D ; Hyun, Sangil, Ph.D ; Choi, Yongsoo, Ph.D ; Kim, Gi Hong, M.Sc ; Kim, Dong Gyu, M.D., Ph.D ; Chun, Kook Jin, Ph.D</creatorcontrib><description>Purpose To measure the absorbed dose rate to water of60 Co gamma rays of a Gamma Knife Model C using water-filled phantoms (WFP). Methods and Materials Spherical WFP with an equivalent water depth of 5, 7, 8, and 9 cm were constructed. The dose rates at the center of an 18-mm helmet were measured in an 8-cm WFP (WFP-3) and two plastic phantoms. Two independent measurement systems were used: one was calibrated to an air kerma (Set I) and the other was calibrated to the absorbed dose to water (Set II). The dose rates of WFP-3 and the plastic phantoms were converted to dose rates for an 8-cm water depth using the attenuation coefficient and the equivalent water depths. Results The dose rate measured at the center of WFP-3 using Set II was 2.2% and 1.0% higher than dose rates measured at the center of the two plastic phantoms. The measured effective attenuation coefficient of Gamma Knife photon beam in WFPs was 0.0621 cm−1 . After attenuation correction, the difference between the dose rate at an 8-cm water depth measured in WFP-3 and dose rates in the plastic phantoms was smaller than the uncertainty of the measurements. Conclusions Systematic errors related to the characteristics of the phantom materials in the dose rate measurement of a Gamma Knife need to be corrected for. Correction of the dose rate using an equivalent water depth and attenuation provided results that were more consistent.</description><identifier>ISSN: 0360-3016</identifier><identifier>EISSN: 1879-355X</identifier><identifier>DOI: 10.1016/j.ijrobp.2010.05.039</identifier><identifier>PMID: 20800384</identifier><identifier>CODEN: IOBPD3</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Absorbed dose to water ; Absorption ; Air ; Algorithms ; Applied radiobiology (equipment, dosimetry...) ; ATTENUATION ; Beam quality factor ; BEAMS ; BETA DECAY RADIOISOTOPES ; BETA-MINUS DECAY RADIOISOTOPES ; Biological and medical sciences ; Biological effects of radiation ; Calibration - standards ; COBALT 60 ; COBALT ISOTOPES ; Cobalt Radioisotopes - therapeutic use ; CORRECTIONS ; Displacement correction ; DOSE RATES ; DOSES ; ELECTROMAGNETIC RADIATION ; Equipment Design - standards ; ERRORS ; Fundamental and applied biological sciences. Psychology ; Gamma Knife ; GAMMA RADIATION ; Gamma Rays ; Head Protective Devices - standards ; Hematology, Oncology and Palliative Medicine ; HYDROGEN COMPOUNDS ; INTERMEDIATE MASS NUCLEI ; INTERNAL CONVERSION RADIOISOTOPES ; IONIZING RADIATIONS ; ISOMERIC TRANSITION ISOTOPES ; ISOTOPES ; MATERIALS ; MEDICINE ; MINUTES LIVING RADIOISOTOPES ; MOCKUP ; Models, Anatomic ; Monte Carlo Method ; NUCLEAR MEDICINE ; NUCLEI ; ODD-ODD NUCLEI ; ORGANIC COMPOUNDS ; ORGANIC POLYMERS ; OXYGEN COMPOUNDS ; PETROCHEMICALS ; PETROLEUM PRODUCTS ; PHANTOMS ; Phantoms, Imaging ; PHOTON BEAMS ; PLASTICS ; POLYMERS ; RADIATION DOSES ; Radiation Equipment and Supplies - standards ; RADIATIONS ; RADIOISOTOPES ; RADIOLOGY ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiometry - methods ; Radiosurgery - instrumentation ; Radiosurgery - methods ; RADIOTHERAPY ; Radiotherapy Dosage ; Reference Standards ; STRUCTURAL MODELS ; SURGERY ; SYNTHETIC MATERIALS ; THERAPY ; Tissues, organs and organisms biophysics ; Uncertainty ; WATER ; Water-filled phantom ; YEARS LIVING RADIOISOTOPES</subject><ispartof>International journal of radiation oncology, biology, physics, 2011-04, Vol.79 (5), p.1580-1587</ispartof><rights>Elsevier Inc.</rights><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-5d532ca036657d7bdb9cbbbdc34037aac426e4f057bc39beb783f5f393f53e5d3</citedby><cites>FETCH-LOGICAL-c520t-5d532ca036657d7bdb9cbbbdc34037aac426e4f057bc39beb783f5f393f53e5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360301610007625$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24103599$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20800384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21491681$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Hyun-Tai, Ph.D</creatorcontrib><creatorcontrib>Park, Youngho, Ph.D</creatorcontrib><creatorcontrib>Hyun, Sangil, Ph.D</creatorcontrib><creatorcontrib>Choi, Yongsoo, Ph.D</creatorcontrib><creatorcontrib>Kim, Gi Hong, M.Sc</creatorcontrib><creatorcontrib>Kim, Dong Gyu, M.D., Ph.D</creatorcontrib><creatorcontrib>Chun, Kook Jin, Ph.D</creatorcontrib><title>Determination of the Absorbed Dose Rate to Water for the 18-mm Helmet of a Gamma Knife</title><title>International journal of radiation oncology, biology, physics</title><addtitle>Int J Radiat Oncol Biol Phys</addtitle><description>Purpose To measure the absorbed dose rate to water of60 Co gamma rays of a Gamma Knife Model C using water-filled phantoms (WFP). Methods and Materials Spherical WFP with an equivalent water depth of 5, 7, 8, and 9 cm were constructed. The dose rates at the center of an 18-mm helmet were measured in an 8-cm WFP (WFP-3) and two plastic phantoms. Two independent measurement systems were used: one was calibrated to an air kerma (Set I) and the other was calibrated to the absorbed dose to water (Set II). The dose rates of WFP-3 and the plastic phantoms were converted to dose rates for an 8-cm water depth using the attenuation coefficient and the equivalent water depths. Results The dose rate measured at the center of WFP-3 using Set II was 2.2% and 1.0% higher than dose rates measured at the center of the two plastic phantoms. The measured effective attenuation coefficient of Gamma Knife photon beam in WFPs was 0.0621 cm−1 . After attenuation correction, the difference between the dose rate at an 8-cm water depth measured in WFP-3 and dose rates in the plastic phantoms was smaller than the uncertainty of the measurements. Conclusions Systematic errors related to the characteristics of the phantom materials in the dose rate measurement of a Gamma Knife need to be corrected for. Correction of the dose rate using an equivalent water depth and attenuation provided results that were more consistent.</description><subject>Absorbed dose to water</subject><subject>Absorption</subject><subject>Air</subject><subject>Algorithms</subject><subject>Applied radiobiology (equipment, dosimetry...)</subject><subject>ATTENUATION</subject><subject>Beam quality factor</subject><subject>BEAMS</subject><subject>BETA DECAY RADIOISOTOPES</subject><subject>BETA-MINUS DECAY RADIOISOTOPES</subject><subject>Biological and medical sciences</subject><subject>Biological effects of radiation</subject><subject>Calibration - standards</subject><subject>COBALT 60</subject><subject>COBALT ISOTOPES</subject><subject>Cobalt Radioisotopes - therapeutic use</subject><subject>CORRECTIONS</subject><subject>Displacement correction</subject><subject>DOSE RATES</subject><subject>DOSES</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>Equipment Design - standards</subject><subject>ERRORS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gamma Knife</subject><subject>GAMMA RADIATION</subject><subject>Gamma Rays</subject><subject>Head Protective Devices - standards</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>HYDROGEN COMPOUNDS</subject><subject>INTERMEDIATE MASS NUCLEI</subject><subject>INTERNAL CONVERSION RADIOISOTOPES</subject><subject>IONIZING RADIATIONS</subject><subject>ISOMERIC TRANSITION ISOTOPES</subject><subject>ISOTOPES</subject><subject>MATERIALS</subject><subject>MEDICINE</subject><subject>MINUTES LIVING RADIOISOTOPES</subject><subject>MOCKUP</subject><subject>Models, Anatomic</subject><subject>Monte Carlo Method</subject><subject>NUCLEAR MEDICINE</subject><subject>NUCLEI</subject><subject>ODD-ODD NUCLEI</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC POLYMERS</subject><subject>OXYGEN COMPOUNDS</subject><subject>PETROCHEMICALS</subject><subject>PETROLEUM PRODUCTS</subject><subject>PHANTOMS</subject><subject>Phantoms, Imaging</subject><subject>PHOTON BEAMS</subject><subject>PLASTICS</subject><subject>POLYMERS</subject><subject>RADIATION DOSES</subject><subject>Radiation Equipment and Supplies - standards</subject><subject>RADIATIONS</subject><subject>RADIOISOTOPES</subject><subject>RADIOLOGY</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiometry - methods</subject><subject>Radiosurgery - instrumentation</subject><subject>Radiosurgery - methods</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy Dosage</subject><subject>Reference Standards</subject><subject>STRUCTURAL MODELS</subject><subject>SURGERY</subject><subject>SYNTHETIC MATERIALS</subject><subject>THERAPY</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Uncertainty</subject><subject>WATER</subject><subject>Water-filled phantom</subject><subject>YEARS LIVING RADIOISOTOPES</subject><issn>0360-3016</issn><issn>1879-355X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFktuKFDEQhoMo7uzoG4gERLzqsdLp9OFGWHZ1V1wQPN-FJF3Npu1OxiQj7Ntv2h4VvPEmBeH76_BXEfKEwY4Bq1-OOzsGr_e7EvIXiB3w7h7ZsLbpCi7Et_tkA7yGgmf4hJzGOAIAY031kJyU0ALwttqQLxeYMMzWqWS9o36g6QbpmY4-aOzphY9IP6iENHn6NcdABx9-Mawt5ple4TRjWnSKXqp5VvSdswM-Ig8GNUV8fIxb8vnN60_nV8X1-8u352fXhRElpEL0gpdG5T5r0fSN7nVntNa94RXwRilTlTVWA4hGG95p1E3LBzHwLr8cRc-35Nma18dkZTQ2obkx3jk0SZas6ljdsky9WKl98D8OGJOcbTQ4TcqhP0TZiqZlZZ1rbkm1kib4GAMOch_srMKtZCAX2-UoV9vlYrsEIbPtWfb0WOCgZ-z_iH77nIHnR0BFo6YhKGds_MtVDLjolkSvVg6zaT8thmUmdAZ7G5aRem__18m_Ccxknc01v-MtxtEfgssLkUzGUoL8uJzIciEsH0dTl4LfAaKttOA</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Chung, Hyun-Tai, Ph.D</creator><creator>Park, Youngho, Ph.D</creator><creator>Hyun, Sangil, Ph.D</creator><creator>Choi, Yongsoo, Ph.D</creator><creator>Kim, Gi Hong, M.Sc</creator><creator>Kim, Dong Gyu, M.D., Ph.D</creator><creator>Chun, Kook Jin, Ph.D</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110401</creationdate><title>Determination of the Absorbed Dose Rate to Water for the 18-mm Helmet of a Gamma Knife</title><author>Chung, Hyun-Tai, Ph.D ; Park, Youngho, Ph.D ; Hyun, Sangil, Ph.D ; Choi, Yongsoo, Ph.D ; Kim, Gi Hong, M.Sc ; Kim, Dong Gyu, M.D., Ph.D ; Chun, Kook Jin, Ph.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-5d532ca036657d7bdb9cbbbdc34037aac426e4f057bc39beb783f5f393f53e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absorbed dose to water</topic><topic>Absorption</topic><topic>Air</topic><topic>Algorithms</topic><topic>Applied radiobiology (equipment, dosimetry...)</topic><topic>ATTENUATION</topic><topic>Beam quality factor</topic><topic>BEAMS</topic><topic>BETA DECAY RADIOISOTOPES</topic><topic>BETA-MINUS DECAY RADIOISOTOPES</topic><topic>Biological and medical sciences</topic><topic>Biological effects of radiation</topic><topic>Calibration - standards</topic><topic>COBALT 60</topic><topic>COBALT ISOTOPES</topic><topic>Cobalt Radioisotopes - therapeutic use</topic><topic>CORRECTIONS</topic><topic>Displacement correction</topic><topic>DOSE RATES</topic><topic>DOSES</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>Equipment Design - standards</topic><topic>ERRORS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gamma Knife</topic><topic>GAMMA RADIATION</topic><topic>Gamma Rays</topic><topic>Head Protective Devices - standards</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>HYDROGEN COMPOUNDS</topic><topic>INTERMEDIATE MASS NUCLEI</topic><topic>INTERNAL CONVERSION RADIOISOTOPES</topic><topic>IONIZING RADIATIONS</topic><topic>ISOMERIC TRANSITION ISOTOPES</topic><topic>ISOTOPES</topic><topic>MATERIALS</topic><topic>MEDICINE</topic><topic>MINUTES LIVING RADIOISOTOPES</topic><topic>MOCKUP</topic><topic>Models, Anatomic</topic><topic>Monte Carlo Method</topic><topic>NUCLEAR MEDICINE</topic><topic>NUCLEI</topic><topic>ODD-ODD NUCLEI</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC POLYMERS</topic><topic>OXYGEN COMPOUNDS</topic><topic>PETROCHEMICALS</topic><topic>PETROLEUM PRODUCTS</topic><topic>PHANTOMS</topic><topic>Phantoms, Imaging</topic><topic>PHOTON BEAMS</topic><topic>PLASTICS</topic><topic>POLYMERS</topic><topic>RADIATION DOSES</topic><topic>Radiation Equipment and Supplies - standards</topic><topic>RADIATIONS</topic><topic>RADIOISOTOPES</topic><topic>RADIOLOGY</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiometry - methods</topic><topic>Radiosurgery - instrumentation</topic><topic>Radiosurgery - methods</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy Dosage</topic><topic>Reference Standards</topic><topic>STRUCTURAL MODELS</topic><topic>SURGERY</topic><topic>SYNTHETIC MATERIALS</topic><topic>THERAPY</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Uncertainty</topic><topic>WATER</topic><topic>Water-filled phantom</topic><topic>YEARS LIVING RADIOISOTOPES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Hyun-Tai, Ph.D</creatorcontrib><creatorcontrib>Park, Youngho, Ph.D</creatorcontrib><creatorcontrib>Hyun, Sangil, Ph.D</creatorcontrib><creatorcontrib>Choi, Yongsoo, Ph.D</creatorcontrib><creatorcontrib>Kim, Gi Hong, M.Sc</creatorcontrib><creatorcontrib>Kim, Dong Gyu, M.D., Ph.D</creatorcontrib><creatorcontrib>Chun, Kook Jin, Ph.D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>International journal of radiation oncology, biology, physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Hyun-Tai, Ph.D</au><au>Park, Youngho, Ph.D</au><au>Hyun, Sangil, Ph.D</au><au>Choi, Yongsoo, Ph.D</au><au>Kim, Gi Hong, M.Sc</au><au>Kim, Dong Gyu, M.D., Ph.D</au><au>Chun, Kook Jin, Ph.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the Absorbed Dose Rate to Water for the 18-mm Helmet of a Gamma Knife</atitle><jtitle>International journal of radiation oncology, biology, physics</jtitle><addtitle>Int J Radiat Oncol Biol Phys</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>79</volume><issue>5</issue><spage>1580</spage><epage>1587</epage><pages>1580-1587</pages><issn>0360-3016</issn><eissn>1879-355X</eissn><coden>IOBPD3</coden><abstract>Purpose To measure the absorbed dose rate to water of60 Co gamma rays of a Gamma Knife Model C using water-filled phantoms (WFP). Methods and Materials Spherical WFP with an equivalent water depth of 5, 7, 8, and 9 cm were constructed. The dose rates at the center of an 18-mm helmet were measured in an 8-cm WFP (WFP-3) and two plastic phantoms. Two independent measurement systems were used: one was calibrated to an air kerma (Set I) and the other was calibrated to the absorbed dose to water (Set II). The dose rates of WFP-3 and the plastic phantoms were converted to dose rates for an 8-cm water depth using the attenuation coefficient and the equivalent water depths. Results The dose rate measured at the center of WFP-3 using Set II was 2.2% and 1.0% higher than dose rates measured at the center of the two plastic phantoms. The measured effective attenuation coefficient of Gamma Knife photon beam in WFPs was 0.0621 cm−1 . After attenuation correction, the difference between the dose rate at an 8-cm water depth measured in WFP-3 and dose rates in the plastic phantoms was smaller than the uncertainty of the measurements. Conclusions Systematic errors related to the characteristics of the phantom materials in the dose rate measurement of a Gamma Knife need to be corrected for. Correction of the dose rate using an equivalent water depth and attenuation provided results that were more consistent.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>20800384</pmid><doi>10.1016/j.ijrobp.2010.05.039</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-3016
ispartof International journal of radiation oncology, biology, physics, 2011-04, Vol.79 (5), p.1580-1587
issn 0360-3016
1879-355X
language eng
recordid cdi_osti_scitechconnect_21491681
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Absorbed dose to water
Absorption
Air
Algorithms
Applied radiobiology (equipment, dosimetry...)
ATTENUATION
Beam quality factor
BEAMS
BETA DECAY RADIOISOTOPES
BETA-MINUS DECAY RADIOISOTOPES
Biological and medical sciences
Biological effects of radiation
Calibration - standards
COBALT 60
COBALT ISOTOPES
Cobalt Radioisotopes - therapeutic use
CORRECTIONS
Displacement correction
DOSE RATES
DOSES
ELECTROMAGNETIC RADIATION
Equipment Design - standards
ERRORS
Fundamental and applied biological sciences. Psychology
Gamma Knife
GAMMA RADIATION
Gamma Rays
Head Protective Devices - standards
Hematology, Oncology and Palliative Medicine
HYDROGEN COMPOUNDS
INTERMEDIATE MASS NUCLEI
INTERNAL CONVERSION RADIOISOTOPES
IONIZING RADIATIONS
ISOMERIC TRANSITION ISOTOPES
ISOTOPES
MATERIALS
MEDICINE
MINUTES LIVING RADIOISOTOPES
MOCKUP
Models, Anatomic
Monte Carlo Method
NUCLEAR MEDICINE
NUCLEI
ODD-ODD NUCLEI
ORGANIC COMPOUNDS
ORGANIC POLYMERS
OXYGEN COMPOUNDS
PETROCHEMICALS
PETROLEUM PRODUCTS
PHANTOMS
Phantoms, Imaging
PHOTON BEAMS
PLASTICS
POLYMERS
RADIATION DOSES
Radiation Equipment and Supplies - standards
RADIATIONS
RADIOISOTOPES
RADIOLOGY
RADIOLOGY AND NUCLEAR MEDICINE
Radiometry - methods
Radiosurgery - instrumentation
Radiosurgery - methods
RADIOTHERAPY
Radiotherapy Dosage
Reference Standards
STRUCTURAL MODELS
SURGERY
SYNTHETIC MATERIALS
THERAPY
Tissues, organs and organisms biophysics
Uncertainty
WATER
Water-filled phantom
YEARS LIVING RADIOISOTOPES
title Determination of the Absorbed Dose Rate to Water for the 18-mm Helmet of a Gamma Knife
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20Absorbed%20Dose%20Rate%20to%20Water%20for%20the%2018-mm%20Helmet%20of%20a%20Gamma%20Knife&rft.jtitle=International%20journal%20of%20radiation%20oncology,%20biology,%20physics&rft.au=Chung,%20Hyun-Tai,%20Ph.D&rft.date=2011-04-01&rft.volume=79&rft.issue=5&rft.spage=1580&rft.epage=1587&rft.pages=1580-1587&rft.issn=0360-3016&rft.eissn=1879-355X&rft.coden=IOBPD3&rft_id=info:doi/10.1016/j.ijrobp.2010.05.039&rft_dat=%3Cproquest_osti_%3E857812640%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857812640&rft_id=info:pmid/20800384&rft_els_id=S0360301610007625&rfr_iscdi=true