General relativity in two dimensions: A Hamilton–Jacobi analysis

We analyzed the constraint structure of the Einstein–Hilbert first-order action in two dimensions using the Hamilton–Jacobi approach. We were able to find a set of involutive, as well as a set of non-involutive constraints. Using generalized brackets we showed how to assure integrability of the theo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2010-11, Vol.325 (11), p.2499-2511
Hauptverfasser: Bertin, M.C., Pimentel, B.M., Pompeia, P.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2511
container_issue 11
container_start_page 2499
container_title Annals of physics
container_volume 325
creator Bertin, M.C.
Pimentel, B.M.
Pompeia, P.J.
description We analyzed the constraint structure of the Einstein–Hilbert first-order action in two dimensions using the Hamilton–Jacobi approach. We were able to find a set of involutive, as well as a set of non-involutive constraints. Using generalized brackets we showed how to assure integrability of the theory, to eliminate the set of non-involutive constraints and how to build the field equations.
doi_str_mv 10.1016/j.aop.2010.05.004
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21457135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491610000953</els_id><sourcerecordid>2141894631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-3e4ed373a1ad496eab91b735490eb6030aef9f391d5495b6bee18705507e95ed3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQh4MoWKsP4G3Rg6etE5PsbvSkxb8UvCh4C9nsFFO2SU1SpTffwTf0SUypJw-ehhm-3zDzEXJIYUSBVqezkfaL0RnkHsQIgG-RAQVZlcDEyzYZAAAruaTVLtmLcQZAKRfNgFzdosOg-yJgr5N9t2lVWFekD190do4uWu_ieXFZ3Om57ZN3359fD9r41hba6X4VbdwnO1PdRzz4rUPyfHP9NL4rJ4-39-PLSWlYw1PJkGPHaqap7risULeStjUTXAK2FTDQOJVTJmmXR6KtWkTa1CAE1ChFjg7J8Wavj8mqaGxC82q8c2iSOsvv1JSJTJ1sqEXwb0uMSc1tNNj32qFfRtVwyXkFDcvk0R9y5pchPxVVLagAzliTIbqBTPAxBpyqRbBzHVaKglqbVzOVzau1eQVCZfM5c7HJYLbxbjGsj0VnsLNhfWvn7T_pHwazisc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>751504338</pqid></control><display><type>article</type><title>General relativity in two dimensions: A Hamilton–Jacobi analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Bertin, M.C. ; Pimentel, B.M. ; Pompeia, P.J.</creator><creatorcontrib>Bertin, M.C. ; Pimentel, B.M. ; Pompeia, P.J.</creatorcontrib><description>We analyzed the constraint structure of the Einstein–Hilbert first-order action in two dimensions using the Hamilton–Jacobi approach. We were able to find a set of involutive, as well as a set of non-involutive constraints. Using generalized brackets we showed how to assure integrability of the theory, to eliminate the set of non-involutive constraints and how to build the field equations.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2010.05.004</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>ACTION INTEGRAL ; Brackets ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Constraints ; Construction ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; FIELD EQUATIONS ; FIELD THEORIES ; General relativity ; GENERAL RELATIVITY THEORY ; HAMILTON-JACOBI EQUATIONS ; Hamilton–Jacobi ; INTEGRALS ; Mathematical analysis ; MATHEMATICAL OPERATORS ; Mathematics ; PARTIAL DIFFERENTIAL EQUATIONS ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUANTUM OPERATORS ; Relativity ; RELATIVITY THEORY ; Theory ; Two dimensional ; Two dimensions ; TWO-DIMENSIONAL CALCULATIONS</subject><ispartof>Annals of physics, 2010-11, Vol.325 (11), p.2499-2511</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-3e4ed373a1ad496eab91b735490eb6030aef9f391d5495b6bee18705507e95ed3</citedby><cites>FETCH-LOGICAL-c384t-3e4ed373a1ad496eab91b735490eb6030aef9f391d5495b6bee18705507e95ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003491610000953$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21457135$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bertin, M.C.</creatorcontrib><creatorcontrib>Pimentel, B.M.</creatorcontrib><creatorcontrib>Pompeia, P.J.</creatorcontrib><title>General relativity in two dimensions: A Hamilton–Jacobi analysis</title><title>Annals of physics</title><description>We analyzed the constraint structure of the Einstein–Hilbert first-order action in two dimensions using the Hamilton–Jacobi approach. We were able to find a set of involutive, as well as a set of non-involutive constraints. Using generalized brackets we showed how to assure integrability of the theory, to eliminate the set of non-involutive constraints and how to build the field equations.</description><subject>ACTION INTEGRAL</subject><subject>Brackets</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Constraints</subject><subject>Construction</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>FIELD EQUATIONS</subject><subject>FIELD THEORIES</subject><subject>General relativity</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>HAMILTON-JACOBI EQUATIONS</subject><subject>Hamilton–Jacobi</subject><subject>INTEGRALS</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL OPERATORS</subject><subject>Mathematics</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUANTUM OPERATORS</subject><subject>Relativity</subject><subject>RELATIVITY THEORY</subject><subject>Theory</subject><subject>Two dimensional</subject><subject>Two dimensions</subject><subject>TWO-DIMENSIONAL CALCULATIONS</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQh4MoWKsP4G3Rg6etE5PsbvSkxb8UvCh4C9nsFFO2SU1SpTffwTf0SUypJw-ehhm-3zDzEXJIYUSBVqezkfaL0RnkHsQIgG-RAQVZlcDEyzYZAAAruaTVLtmLcQZAKRfNgFzdosOg-yJgr5N9t2lVWFekD190do4uWu_ieXFZ3Om57ZN3359fD9r41hba6X4VbdwnO1PdRzz4rUPyfHP9NL4rJ4-39-PLSWlYw1PJkGPHaqap7risULeStjUTXAK2FTDQOJVTJmmXR6KtWkTa1CAE1ChFjg7J8Wavj8mqaGxC82q8c2iSOsvv1JSJTJ1sqEXwb0uMSc1tNNj32qFfRtVwyXkFDcvk0R9y5pchPxVVLagAzliTIbqBTPAxBpyqRbBzHVaKglqbVzOVzau1eQVCZfM5c7HJYLbxbjGsj0VnsLNhfWvn7T_pHwazisc</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Bertin, M.C.</creator><creator>Pimentel, B.M.</creator><creator>Pompeia, P.J.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20101101</creationdate><title>General relativity in two dimensions: A Hamilton–Jacobi analysis</title><author>Bertin, M.C. ; Pimentel, B.M. ; Pompeia, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-3e4ed373a1ad496eab91b735490eb6030aef9f391d5495b6bee18705507e95ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ACTION INTEGRAL</topic><topic>Brackets</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Constraints</topic><topic>Construction</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>FIELD EQUATIONS</topic><topic>FIELD THEORIES</topic><topic>General relativity</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>HAMILTON-JACOBI EQUATIONS</topic><topic>Hamilton–Jacobi</topic><topic>INTEGRALS</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL OPERATORS</topic><topic>Mathematics</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUANTUM OPERATORS</topic><topic>Relativity</topic><topic>RELATIVITY THEORY</topic><topic>Theory</topic><topic>Two dimensional</topic><topic>Two dimensions</topic><topic>TWO-DIMENSIONAL CALCULATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertin, M.C.</creatorcontrib><creatorcontrib>Pimentel, B.M.</creatorcontrib><creatorcontrib>Pompeia, P.J.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertin, M.C.</au><au>Pimentel, B.M.</au><au>Pompeia, P.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General relativity in two dimensions: A Hamilton–Jacobi analysis</atitle><jtitle>Annals of physics</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>325</volume><issue>11</issue><spage>2499</spage><epage>2511</epage><pages>2499-2511</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>We analyzed the constraint structure of the Einstein–Hilbert first-order action in two dimensions using the Hamilton–Jacobi approach. We were able to find a set of involutive, as well as a set of non-involutive constraints. Using generalized brackets we showed how to assure integrability of the theory, to eliminate the set of non-involutive constraints and how to build the field equations.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2010.05.004</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2010-11, Vol.325 (11), p.2499-2511
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_21457135
source Elsevier ScienceDirect Journals
subjects ACTION INTEGRAL
Brackets
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Constraints
Construction
DIFFERENTIAL EQUATIONS
EQUATIONS
FIELD EQUATIONS
FIELD THEORIES
General relativity
GENERAL RELATIVITY THEORY
HAMILTON-JACOBI EQUATIONS
Hamilton–Jacobi
INTEGRALS
Mathematical analysis
MATHEMATICAL OPERATORS
Mathematics
PARTIAL DIFFERENTIAL EQUATIONS
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
QUANTUM OPERATORS
Relativity
RELATIVITY THEORY
Theory
Two dimensional
Two dimensions
TWO-DIMENSIONAL CALCULATIONS
title General relativity in two dimensions: A Hamilton–Jacobi analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20relativity%20in%20two%20dimensions:%20A%20Hamilton%E2%80%93Jacobi%20analysis&rft.jtitle=Annals%20of%20physics&rft.au=Bertin,%20M.C.&rft.date=2010-11-01&rft.volume=325&rft.issue=11&rft.spage=2499&rft.epage=2511&rft.pages=2499-2511&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2010.05.004&rft_dat=%3Cproquest_osti_%3E2141894631%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=751504338&rft_id=info:pmid/&rft_els_id=S0003491610000953&rfr_iscdi=true