Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices
Using the MIT Photonic-Bands Package to calculate fully vectorial definite-mode eigenmodes of Maxwell's equations with periodic boundary conditions in a plane-wave basis, light propagation is simulated in fibres formed by point defects in two-dimensional periodic lattices of cylindrical holes i...
Gespeichert in:
Veröffentlicht in: | Quantum electronics (Woodbury, N.Y.) N.Y.), 2006-01, Vol.36 (1), p.67-72 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | Quantum electronics (Woodbury, N.Y.) |
container_volume | 36 |
creator | Sokolov, V O Plotnichenko, V G Nazaryants, V O Dianov, Evgenii M |
description | Using the MIT Photonic-Bands Package to calculate fully vectorial definite-mode eigenmodes of Maxwell's equations with periodic boundary conditions in a plane-wave basis, light propagation is simulated in fibres formed by point defects in two-dimensional periodic lattices of cylindrical holes in a glass or of glass tubes. The holes and gaps between tubes are assumed filled with air. Single-site hexagonal and square lattices are considered, which were most often studied both theoretically and experimentally and are used to fabricate silica photonic-crystal fibres. As a defect, a single vacancy is studied - the absent lattice site (one hole in a glass or one of the tubes are filled with the same glass) and a similar vacancy with nearest neighbours representing holes of a larger diameter. The obtained solutions are analysed by the method of effective mode area. The dependences of the effective refractive index and dispersion of the fundamental mode on the geometrical parameters of a fibre are found. The calculations are performed for tellurite-tungstate 80TeO{sub 2}-20WO{sub 3} glass fibres taking into account the frequency dispersion of the refractive index. (optical fibres) |
doi_str_mv | 10.1070/QE2006v036n01ABEH013104 |
format | Article |
fullrecord | <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21456830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1070_QE2006v036n01ABEH013104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-6d39edfc2c561c9021a08a6354f4610f8786185083d2cba5783e94394b7925ca3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRsFY_gwFPHlYnfzbJHmupViiKoOeQZrNtynazJNmC394t68GDepph3u_NDC_LrjHcYRBw_7YgAPwAlLeAZw-LJWCKgZ1kE8y4zJkoy9OhB05zIbE8zy5i3AGAwJxOst1Lv7fBGd2g6PZ9o5PzLfI16rY--daZ3ITPmAY52abpg0s2T327GUbJok2jY0S1WwcbUR9thVyLOh303qZh6aigyh6csfEyO6t1E-3Vd51mH4-L9_kyX70-Pc9nq9xQkCnnFS1tVRtiCo5NCQRrkJrTgtWMY6ilkBzLAiStiFnrQkhqS0ZLthYlKYym0-xm3Otjciqa4WWzNb5trUmKYFZwSWGgxEiZ4GMMtlZdcHsdPhUGdQxW_RHs4Lwdnc53P0ycqmO-inKF1QwT1VX1wJLf2P8PfAGhx4l_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Sokolov, V O ; Plotnichenko, V G ; Nazaryants, V O ; Dianov, Evgenii M</creator><creatorcontrib>Sokolov, V O ; Plotnichenko, V G ; Nazaryants, V O ; Dianov, Evgenii M</creatorcontrib><description>Using the MIT Photonic-Bands Package to calculate fully vectorial definite-mode eigenmodes of Maxwell's equations with periodic boundary conditions in a plane-wave basis, light propagation is simulated in fibres formed by point defects in two-dimensional periodic lattices of cylindrical holes in a glass or of glass tubes. The holes and gaps between tubes are assumed filled with air. Single-site hexagonal and square lattices are considered, which were most often studied both theoretically and experimentally and are used to fabricate silica photonic-crystal fibres. As a defect, a single vacancy is studied - the absent lattice site (one hole in a glass or one of the tubes are filled with the same glass) and a similar vacancy with nearest neighbours representing holes of a larger diameter. The obtained solutions are analysed by the method of effective mode area. The dependences of the effective refractive index and dispersion of the fundamental mode on the geometrical parameters of a fibre are found. The calculations are performed for tellurite-tungstate 80TeO{sub 2}-20WO{sub 3} glass fibres taking into account the frequency dispersion of the refractive index. (optical fibres)</description><identifier>ISSN: 1063-7818</identifier><identifier>EISSN: 1468-4799</identifier><identifier>DOI: 10.1070/QE2006v036n01ABEH013104</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>BOUNDARY CONDITIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPUTERIZED SIMULATION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CONFIGURATION ; CRYSTAL DEFECTS ; CRYSTAL LATTICES ; CRYSTAL STRUCTURE ; CRYSTALS ; CYLINDRICAL CONFIGURATION ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; FIBERS ; GLASS ; HOLES ; LIGHT TRANSMISSION ; MATERIALS SCIENCE ; MATHEMATICAL SOLUTIONS ; MAXWELL EQUATIONS ; MINERALS ; OPTICAL FIBERS ; OPTICAL PROPERTIES ; OXIDE MINERALS ; OXYGEN COMPOUNDS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHYSICAL PROPERTIES ; POINT DEFECTS ; REFRACTIVE INDEX ; REFRACTORY METAL COMPOUNDS ; SILICA ; SIMULATION ; TELLURIUM COMPOUNDS ; TETRAGONAL LATTICES ; TRANSITION ELEMENT COMPOUNDS ; TRANSMISSION ; TUNGSTATES ; TUNGSTEN COMPOUNDS ; VACANCIES ; WAVE PROPAGATION</subject><ispartof>Quantum electronics (Woodbury, N.Y.), 2006-01, Vol.36 (1), p.67-72</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/QE2006v036n01ABEH013104/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53910</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21456830$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sokolov, V O</creatorcontrib><creatorcontrib>Plotnichenko, V G</creatorcontrib><creatorcontrib>Nazaryants, V O</creatorcontrib><creatorcontrib>Dianov, Evgenii M</creatorcontrib><title>Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices</title><title>Quantum electronics (Woodbury, N.Y.)</title><description>Using the MIT Photonic-Bands Package to calculate fully vectorial definite-mode eigenmodes of Maxwell's equations with periodic boundary conditions in a plane-wave basis, light propagation is simulated in fibres formed by point defects in two-dimensional periodic lattices of cylindrical holes in a glass or of glass tubes. The holes and gaps between tubes are assumed filled with air. Single-site hexagonal and square lattices are considered, which were most often studied both theoretically and experimentally and are used to fabricate silica photonic-crystal fibres. As a defect, a single vacancy is studied - the absent lattice site (one hole in a glass or one of the tubes are filled with the same glass) and a similar vacancy with nearest neighbours representing holes of a larger diameter. The obtained solutions are analysed by the method of effective mode area. The dependences of the effective refractive index and dispersion of the fundamental mode on the geometrical parameters of a fibre are found. The calculations are performed for tellurite-tungstate 80TeO{sub 2}-20WO{sub 3} glass fibres taking into account the frequency dispersion of the refractive index. (optical fibres)</description><subject>BOUNDARY CONDITIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CONFIGURATION</subject><subject>CRYSTAL DEFECTS</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL STRUCTURE</subject><subject>CRYSTALS</subject><subject>CYLINDRICAL CONFIGURATION</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>FIBERS</subject><subject>GLASS</subject><subject>HOLES</subject><subject>LIGHT TRANSMISSION</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>MAXWELL EQUATIONS</subject><subject>MINERALS</subject><subject>OPTICAL FIBERS</subject><subject>OPTICAL PROPERTIES</subject><subject>OXIDE MINERALS</subject><subject>OXYGEN COMPOUNDS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHYSICAL PROPERTIES</subject><subject>POINT DEFECTS</subject><subject>REFRACTIVE INDEX</subject><subject>REFRACTORY METAL COMPOUNDS</subject><subject>SILICA</subject><subject>SIMULATION</subject><subject>TELLURIUM COMPOUNDS</subject><subject>TETRAGONAL LATTICES</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>TRANSMISSION</subject><subject>TUNGSTATES</subject><subject>TUNGSTEN COMPOUNDS</subject><subject>VACANCIES</subject><subject>WAVE PROPAGATION</subject><issn>1063-7818</issn><issn>1468-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxRdRsFY_gwFPHlYnfzbJHmupViiKoOeQZrNtynazJNmC394t68GDepph3u_NDC_LrjHcYRBw_7YgAPwAlLeAZw-LJWCKgZ1kE8y4zJkoy9OhB05zIbE8zy5i3AGAwJxOst1Lv7fBGd2g6PZ9o5PzLfI16rY--daZ3ITPmAY52abpg0s2T327GUbJok2jY0S1WwcbUR9thVyLOh303qZh6aigyh6csfEyO6t1E-3Vd51mH4-L9_kyX70-Pc9nq9xQkCnnFS1tVRtiCo5NCQRrkJrTgtWMY6ilkBzLAiStiFnrQkhqS0ZLthYlKYym0-xm3Otjciqa4WWzNb5trUmKYFZwSWGgxEiZ4GMMtlZdcHsdPhUGdQxW_RHs4Lwdnc53P0ycqmO-inKF1QwT1VX1wJLf2P8PfAGhx4l_</recordid><startdate>20060131</startdate><enddate>20060131</enddate><creator>Sokolov, V O</creator><creator>Plotnichenko, V G</creator><creator>Nazaryants, V O</creator><creator>Dianov, Evgenii M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20060131</creationdate><title>Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices</title><author>Sokolov, V O ; Plotnichenko, V G ; Nazaryants, V O ; Dianov, Evgenii M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-6d39edfc2c561c9021a08a6354f4610f8786185083d2cba5783e94394b7925ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>BOUNDARY CONDITIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CONFIGURATION</topic><topic>CRYSTAL DEFECTS</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL STRUCTURE</topic><topic>CRYSTALS</topic><topic>CYLINDRICAL CONFIGURATION</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>FIBERS</topic><topic>GLASS</topic><topic>HOLES</topic><topic>LIGHT TRANSMISSION</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>MAXWELL EQUATIONS</topic><topic>MINERALS</topic><topic>OPTICAL FIBERS</topic><topic>OPTICAL PROPERTIES</topic><topic>OXIDE MINERALS</topic><topic>OXYGEN COMPOUNDS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHYSICAL PROPERTIES</topic><topic>POINT DEFECTS</topic><topic>REFRACTIVE INDEX</topic><topic>REFRACTORY METAL COMPOUNDS</topic><topic>SILICA</topic><topic>SIMULATION</topic><topic>TELLURIUM COMPOUNDS</topic><topic>TETRAGONAL LATTICES</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>TRANSMISSION</topic><topic>TUNGSTATES</topic><topic>TUNGSTEN COMPOUNDS</topic><topic>VACANCIES</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sokolov, V O</creatorcontrib><creatorcontrib>Plotnichenko, V G</creatorcontrib><creatorcontrib>Nazaryants, V O</creatorcontrib><creatorcontrib>Dianov, Evgenii M</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolov, V O</au><au>Plotnichenko, V G</au><au>Nazaryants, V O</au><au>Dianov, Evgenii M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices</atitle><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle><date>2006-01-31</date><risdate>2006</risdate><volume>36</volume><issue>1</issue><spage>67</spage><epage>72</epage><pages>67-72</pages><issn>1063-7818</issn><eissn>1468-4799</eissn><abstract>Using the MIT Photonic-Bands Package to calculate fully vectorial definite-mode eigenmodes of Maxwell's equations with periodic boundary conditions in a plane-wave basis, light propagation is simulated in fibres formed by point defects in two-dimensional periodic lattices of cylindrical holes in a glass or of glass tubes. The holes and gaps between tubes are assumed filled with air. Single-site hexagonal and square lattices are considered, which were most often studied both theoretically and experimentally and are used to fabricate silica photonic-crystal fibres. As a defect, a single vacancy is studied - the absent lattice site (one hole in a glass or one of the tubes are filled with the same glass) and a similar vacancy with nearest neighbours representing holes of a larger diameter. The obtained solutions are analysed by the method of effective mode area. The dependences of the effective refractive index and dispersion of the fundamental mode on the geometrical parameters of a fibre are found. The calculations are performed for tellurite-tungstate 80TeO{sub 2}-20WO{sub 3} glass fibres taking into account the frequency dispersion of the refractive index. (optical fibres)</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1070/QE2006v036n01ABEH013104</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7818 |
ispartof | Quantum electronics (Woodbury, N.Y.), 2006-01, Vol.36 (1), p.67-72 |
issn | 1063-7818 1468-4799 |
language | eng |
recordid | cdi_osti_scitechconnect_21456830 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | BOUNDARY CONDITIONS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMPUTERIZED SIMULATION CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY CONFIGURATION CRYSTAL DEFECTS CRYSTAL LATTICES CRYSTAL STRUCTURE CRYSTALS CYLINDRICAL CONFIGURATION DIFFERENTIAL EQUATIONS EQUATIONS FIBERS GLASS HOLES LIGHT TRANSMISSION MATERIALS SCIENCE MATHEMATICAL SOLUTIONS MAXWELL EQUATIONS MINERALS OPTICAL FIBERS OPTICAL PROPERTIES OXIDE MINERALS OXYGEN COMPOUNDS PARTIAL DIFFERENTIAL EQUATIONS PHYSICAL PROPERTIES POINT DEFECTS REFRACTIVE INDEX REFRACTORY METAL COMPOUNDS SILICA SIMULATION TELLURIUM COMPOUNDS TETRAGONAL LATTICES TRANSITION ELEMENT COMPOUNDS TRANSMISSION TUNGSTATES TUNGSTEN COMPOUNDS VACANCIES WAVE PROPAGATION |
title | Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20photonic-crystal%20tellurite-tungstate%20glass%20fibres%20used%20in%20parametric%20fibre%20devices&rft.jtitle=Quantum%20electronics%20(Woodbury,%20N.Y.)&rft.au=Sokolov,%20V%20O&rft.date=2006-01-31&rft.volume=36&rft.issue=1&rft.spage=67&rft.epage=72&rft.pages=67-72&rft.issn=1063-7818&rft.eissn=1468-4799&rft_id=info:doi/10.1070/QE2006v036n01ABEH013104&rft_dat=%3Ciop_osti_%3E10_1070_QE2006v036n01ABEH013104%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |