Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices

Using the MIT Photonic-Bands Package to calculate fully vectorial definite-mode eigenmodes of Maxwell's equations with periodic boundary conditions in a plane-wave basis, light propagation is simulated in fibres formed by point defects in two-dimensional periodic lattices of cylindrical holes i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum electronics (Woodbury, N.Y.) N.Y.), 2006-01, Vol.36 (1), p.67-72
Hauptverfasser: Sokolov, V O, Plotnichenko, V G, Nazaryants, V O, Dianov, Evgenii M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 67
container_title Quantum electronics (Woodbury, N.Y.)
container_volume 36
creator Sokolov, V O
Plotnichenko, V G
Nazaryants, V O
Dianov, Evgenii M
description Using the MIT Photonic-Bands Package to calculate fully vectorial definite-mode eigenmodes of Maxwell's equations with periodic boundary conditions in a plane-wave basis, light propagation is simulated in fibres formed by point defects in two-dimensional periodic lattices of cylindrical holes in a glass or of glass tubes. The holes and gaps between tubes are assumed filled with air. Single-site hexagonal and square lattices are considered, which were most often studied both theoretically and experimentally and are used to fabricate silica photonic-crystal fibres. As a defect, a single vacancy is studied - the absent lattice site (one hole in a glass or one of the tubes are filled with the same glass) and a similar vacancy with nearest neighbours representing holes of a larger diameter. The obtained solutions are analysed by the method of effective mode area. The dependences of the effective refractive index and dispersion of the fundamental mode on the geometrical parameters of a fibre are found. The calculations are performed for tellurite-tungstate 80TeO{sub 2}-20WO{sub 3} glass fibres taking into account the frequency dispersion of the refractive index. (optical fibres)
doi_str_mv 10.1070/QE2006v036n01ABEH013104
format Article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21456830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1070_QE2006v036n01ABEH013104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-6d39edfc2c561c9021a08a6354f4610f8786185083d2cba5783e94394b7925ca3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRsFY_gwFPHlYnfzbJHmupViiKoOeQZrNtynazJNmC394t68GDepph3u_NDC_LrjHcYRBw_7YgAPwAlLeAZw-LJWCKgZ1kE8y4zJkoy9OhB05zIbE8zy5i3AGAwJxOst1Lv7fBGd2g6PZ9o5PzLfI16rY--daZ3ITPmAY52abpg0s2T327GUbJok2jY0S1WwcbUR9thVyLOh303qZh6aigyh6csfEyO6t1E-3Vd51mH4-L9_kyX70-Pc9nq9xQkCnnFS1tVRtiCo5NCQRrkJrTgtWMY6ilkBzLAiStiFnrQkhqS0ZLthYlKYym0-xm3Otjciqa4WWzNb5trUmKYFZwSWGgxEiZ4GMMtlZdcHsdPhUGdQxW_RHs4Lwdnc53P0ycqmO-inKF1QwT1VX1wJLf2P8PfAGhx4l_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Sokolov, V O ; Plotnichenko, V G ; Nazaryants, V O ; Dianov, Evgenii M</creator><creatorcontrib>Sokolov, V O ; Plotnichenko, V G ; Nazaryants, V O ; Dianov, Evgenii M</creatorcontrib><description>Using the MIT Photonic-Bands Package to calculate fully vectorial definite-mode eigenmodes of Maxwell's equations with periodic boundary conditions in a plane-wave basis, light propagation is simulated in fibres formed by point defects in two-dimensional periodic lattices of cylindrical holes in a glass or of glass tubes. The holes and gaps between tubes are assumed filled with air. Single-site hexagonal and square lattices are considered, which were most often studied both theoretically and experimentally and are used to fabricate silica photonic-crystal fibres. As a defect, a single vacancy is studied - the absent lattice site (one hole in a glass or one of the tubes are filled with the same glass) and a similar vacancy with nearest neighbours representing holes of a larger diameter. The obtained solutions are analysed by the method of effective mode area. The dependences of the effective refractive index and dispersion of the fundamental mode on the geometrical parameters of a fibre are found. The calculations are performed for tellurite-tungstate 80TeO{sub 2}-20WO{sub 3} glass fibres taking into account the frequency dispersion of the refractive index. (optical fibres)</description><identifier>ISSN: 1063-7818</identifier><identifier>EISSN: 1468-4799</identifier><identifier>DOI: 10.1070/QE2006v036n01ABEH013104</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>BOUNDARY CONDITIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; COMPUTERIZED SIMULATION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CONFIGURATION ; CRYSTAL DEFECTS ; CRYSTAL LATTICES ; CRYSTAL STRUCTURE ; CRYSTALS ; CYLINDRICAL CONFIGURATION ; DIFFERENTIAL EQUATIONS ; EQUATIONS ; FIBERS ; GLASS ; HOLES ; LIGHT TRANSMISSION ; MATERIALS SCIENCE ; MATHEMATICAL SOLUTIONS ; MAXWELL EQUATIONS ; MINERALS ; OPTICAL FIBERS ; OPTICAL PROPERTIES ; OXIDE MINERALS ; OXYGEN COMPOUNDS ; PARTIAL DIFFERENTIAL EQUATIONS ; PHYSICAL PROPERTIES ; POINT DEFECTS ; REFRACTIVE INDEX ; REFRACTORY METAL COMPOUNDS ; SILICA ; SIMULATION ; TELLURIUM COMPOUNDS ; TETRAGONAL LATTICES ; TRANSITION ELEMENT COMPOUNDS ; TRANSMISSION ; TUNGSTATES ; TUNGSTEN COMPOUNDS ; VACANCIES ; WAVE PROPAGATION</subject><ispartof>Quantum electronics (Woodbury, N.Y.), 2006-01, Vol.36 (1), p.67-72</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/QE2006v036n01ABEH013104/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53910</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21456830$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sokolov, V O</creatorcontrib><creatorcontrib>Plotnichenko, V G</creatorcontrib><creatorcontrib>Nazaryants, V O</creatorcontrib><creatorcontrib>Dianov, Evgenii M</creatorcontrib><title>Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices</title><title>Quantum electronics (Woodbury, N.Y.)</title><description>Using the MIT Photonic-Bands Package to calculate fully vectorial definite-mode eigenmodes of Maxwell's equations with periodic boundary conditions in a plane-wave basis, light propagation is simulated in fibres formed by point defects in two-dimensional periodic lattices of cylindrical holes in a glass or of glass tubes. The holes and gaps between tubes are assumed filled with air. Single-site hexagonal and square lattices are considered, which were most often studied both theoretically and experimentally and are used to fabricate silica photonic-crystal fibres. As a defect, a single vacancy is studied - the absent lattice site (one hole in a glass or one of the tubes are filled with the same glass) and a similar vacancy with nearest neighbours representing holes of a larger diameter. The obtained solutions are analysed by the method of effective mode area. The dependences of the effective refractive index and dispersion of the fundamental mode on the geometrical parameters of a fibre are found. The calculations are performed for tellurite-tungstate 80TeO{sub 2}-20WO{sub 3} glass fibres taking into account the frequency dispersion of the refractive index. (optical fibres)</description><subject>BOUNDARY CONDITIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CONFIGURATION</subject><subject>CRYSTAL DEFECTS</subject><subject>CRYSTAL LATTICES</subject><subject>CRYSTAL STRUCTURE</subject><subject>CRYSTALS</subject><subject>CYLINDRICAL CONFIGURATION</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>EQUATIONS</subject><subject>FIBERS</subject><subject>GLASS</subject><subject>HOLES</subject><subject>LIGHT TRANSMISSION</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>MAXWELL EQUATIONS</subject><subject>MINERALS</subject><subject>OPTICAL FIBERS</subject><subject>OPTICAL PROPERTIES</subject><subject>OXIDE MINERALS</subject><subject>OXYGEN COMPOUNDS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PHYSICAL PROPERTIES</subject><subject>POINT DEFECTS</subject><subject>REFRACTIVE INDEX</subject><subject>REFRACTORY METAL COMPOUNDS</subject><subject>SILICA</subject><subject>SIMULATION</subject><subject>TELLURIUM COMPOUNDS</subject><subject>TETRAGONAL LATTICES</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>TRANSMISSION</subject><subject>TUNGSTATES</subject><subject>TUNGSTEN COMPOUNDS</subject><subject>VACANCIES</subject><subject>WAVE PROPAGATION</subject><issn>1063-7818</issn><issn>1468-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxRdRsFY_gwFPHlYnfzbJHmupViiKoOeQZrNtynazJNmC394t68GDepph3u_NDC_LrjHcYRBw_7YgAPwAlLeAZw-LJWCKgZ1kE8y4zJkoy9OhB05zIbE8zy5i3AGAwJxOst1Lv7fBGd2g6PZ9o5PzLfI16rY--daZ3ITPmAY52abpg0s2T327GUbJok2jY0S1WwcbUR9thVyLOh303qZh6aigyh6csfEyO6t1E-3Vd51mH4-L9_kyX70-Pc9nq9xQkCnnFS1tVRtiCo5NCQRrkJrTgtWMY6ilkBzLAiStiFnrQkhqS0ZLthYlKYym0-xm3Otjciqa4WWzNb5trUmKYFZwSWGgxEiZ4GMMtlZdcHsdPhUGdQxW_RHs4Lwdnc53P0ycqmO-inKF1QwT1VX1wJLf2P8PfAGhx4l_</recordid><startdate>20060131</startdate><enddate>20060131</enddate><creator>Sokolov, V O</creator><creator>Plotnichenko, V G</creator><creator>Nazaryants, V O</creator><creator>Dianov, Evgenii M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20060131</creationdate><title>Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices</title><author>Sokolov, V O ; Plotnichenko, V G ; Nazaryants, V O ; Dianov, Evgenii M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-6d39edfc2c561c9021a08a6354f4610f8786185083d2cba5783e94394b7925ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>BOUNDARY CONDITIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CONFIGURATION</topic><topic>CRYSTAL DEFECTS</topic><topic>CRYSTAL LATTICES</topic><topic>CRYSTAL STRUCTURE</topic><topic>CRYSTALS</topic><topic>CYLINDRICAL CONFIGURATION</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>EQUATIONS</topic><topic>FIBERS</topic><topic>GLASS</topic><topic>HOLES</topic><topic>LIGHT TRANSMISSION</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>MAXWELL EQUATIONS</topic><topic>MINERALS</topic><topic>OPTICAL FIBERS</topic><topic>OPTICAL PROPERTIES</topic><topic>OXIDE MINERALS</topic><topic>OXYGEN COMPOUNDS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PHYSICAL PROPERTIES</topic><topic>POINT DEFECTS</topic><topic>REFRACTIVE INDEX</topic><topic>REFRACTORY METAL COMPOUNDS</topic><topic>SILICA</topic><topic>SIMULATION</topic><topic>TELLURIUM COMPOUNDS</topic><topic>TETRAGONAL LATTICES</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>TRANSMISSION</topic><topic>TUNGSTATES</topic><topic>TUNGSTEN COMPOUNDS</topic><topic>VACANCIES</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sokolov, V O</creatorcontrib><creatorcontrib>Plotnichenko, V G</creatorcontrib><creatorcontrib>Nazaryants, V O</creatorcontrib><creatorcontrib>Dianov, Evgenii M</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolov, V O</au><au>Plotnichenko, V G</au><au>Nazaryants, V O</au><au>Dianov, Evgenii M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices</atitle><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle><date>2006-01-31</date><risdate>2006</risdate><volume>36</volume><issue>1</issue><spage>67</spage><epage>72</epage><pages>67-72</pages><issn>1063-7818</issn><eissn>1468-4799</eissn><abstract>Using the MIT Photonic-Bands Package to calculate fully vectorial definite-mode eigenmodes of Maxwell's equations with periodic boundary conditions in a plane-wave basis, light propagation is simulated in fibres formed by point defects in two-dimensional periodic lattices of cylindrical holes in a glass or of glass tubes. The holes and gaps between tubes are assumed filled with air. Single-site hexagonal and square lattices are considered, which were most often studied both theoretically and experimentally and are used to fabricate silica photonic-crystal fibres. As a defect, a single vacancy is studied - the absent lattice site (one hole in a glass or one of the tubes are filled with the same glass) and a similar vacancy with nearest neighbours representing holes of a larger diameter. The obtained solutions are analysed by the method of effective mode area. The dependences of the effective refractive index and dispersion of the fundamental mode on the geometrical parameters of a fibre are found. The calculations are performed for tellurite-tungstate 80TeO{sub 2}-20WO{sub 3} glass fibres taking into account the frequency dispersion of the refractive index. (optical fibres)</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1070/QE2006v036n01ABEH013104</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7818
ispartof Quantum electronics (Woodbury, N.Y.), 2006-01, Vol.36 (1), p.67-72
issn 1063-7818
1468-4799
language eng
recordid cdi_osti_scitechconnect_21456830
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects BOUNDARY CONDITIONS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPUTERIZED SIMULATION
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CONFIGURATION
CRYSTAL DEFECTS
CRYSTAL LATTICES
CRYSTAL STRUCTURE
CRYSTALS
CYLINDRICAL CONFIGURATION
DIFFERENTIAL EQUATIONS
EQUATIONS
FIBERS
GLASS
HOLES
LIGHT TRANSMISSION
MATERIALS SCIENCE
MATHEMATICAL SOLUTIONS
MAXWELL EQUATIONS
MINERALS
OPTICAL FIBERS
OPTICAL PROPERTIES
OXIDE MINERALS
OXYGEN COMPOUNDS
PARTIAL DIFFERENTIAL EQUATIONS
PHYSICAL PROPERTIES
POINT DEFECTS
REFRACTIVE INDEX
REFRACTORY METAL COMPOUNDS
SILICA
SIMULATION
TELLURIUM COMPOUNDS
TETRAGONAL LATTICES
TRANSITION ELEMENT COMPOUNDS
TRANSMISSION
TUNGSTATES
TUNGSTEN COMPOUNDS
VACANCIES
WAVE PROPAGATION
title Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20photonic-crystal%20tellurite-tungstate%20glass%20fibres%20used%20in%20parametric%20fibre%20devices&rft.jtitle=Quantum%20electronics%20(Woodbury,%20N.Y.)&rft.au=Sokolov,%20V%20O&rft.date=2006-01-31&rft.volume=36&rft.issue=1&rft.spage=67&rft.epage=72&rft.pages=67-72&rft.issn=1063-7818&rft.eissn=1468-4799&rft_id=info:doi/10.1070/QE2006v036n01ABEH013104&rft_dat=%3Ciop_osti_%3E10_1070_QE2006v036n01ABEH013104%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true