Nonlinear absorption in silicon nanocrystals

The nonlinear absorption of light in silicon nanocrystals suspended in glycerol is studied by the Z-scan method. The experimental data are used for calculating the nonlinear absorption coefficient {beta}{sub Si-gl} for silicon nanocrystals in glycerol (with a volume filling factor f=2x10{sup -4}), a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum electronics (Woodbury, N.Y.) N.Y.), 2001-09, Vol.31 (9), p.817-820
Hauptverfasser: Korovin, S B, Orlov, A N, Prokhorov, A M, Pustovoi, V I, Konstantaki, M, Couris, S, Koudoumas, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 820
container_issue 9
container_start_page 817
container_title Quantum electronics (Woodbury, N.Y.)
container_volume 31
creator Korovin, S B
Orlov, A N
Prokhorov, A M
Pustovoi, V I
Konstantaki, M
Couris, S
Koudoumas, E
description The nonlinear absorption of light in silicon nanocrystals suspended in glycerol is studied by the Z-scan method. The experimental data are used for calculating the nonlinear absorption coefficient {beta}{sub Si-gl} for silicon nanocrystals in glycerol (with a volume filling factor f=2x10{sup -4}), and the coefficient {beta}{sub Si} for pure silicon with a hypothetical volume filling factor f{approx}1. For the laser radiation wavelength {lambda}=497 nm and the pulse duration {tau}=0.5 ns, these coefficients are {beta}{sub Si-gl}=1.2x10{sup -8} cm W{sup -1} and {beta}{sub Si} =7.36x10{sup -5} cm W{sup -1}, while the corresponding values for {lambda}=532 nm and {tau}=10 ns are {beta}{sub Si-gl}=5.36x10{sup -5} cm W{sup -1} and {beta}{sub Si} =0.25 cm W{sup -1}. Experiments with 540-nm, 20-ps laser pulses performed for two different filling factors equal to 2x10{sup -4} and 3x10{sup -3} gave nonlinear absorption coefficients {beta}{sub Si-gl}=2x10{sup -7} and 3.6x10{sup -6} cm W{sup -1}, respectively. Optical absorption and Raman scattering spectra of silicon nanocrystals are also studied. A theoretical analysis of the experimental results shows that optical absorption can be related to the localisation of photoexcited carriers in the conduction band. The localisation is caused by the action of strong static electric fields on an electron in a nanoparticle. (nonlinear optical phenomena)
doi_str_mv 10.1070/QE2001v031n09ABEH002052
format Article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21456806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1070_QE2001v031n09ABEH002052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-5ac7e994fcea4c2b5690c4c183e735c859b92d6c8fa94269f16dc553a385963b3</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgXf0NFjwJrr4km69jLdUKRRH0HLKvWYzU7JIsQv-9KfXgQT3NwJt5b94Qck7hmoKCm-cFA6CfwGkEM7tdLAEYCHZAJrSRum6UMYeFg-S10lQfk5Oc3wFAUckn5Oqxj5sQvUtT1-Y-DWPo4zTEaQ6bgIVGF3tM2zy6TT4lR10Bf_aNFXm9W7zMl_Xq6f5hPlvVyCWMtXCovDFNh941yFohDWCDVHOvuEAtTGvYWqLunGmYNB2VaxSCO15Gkre8Ihf7vX0eg80YRo9vJUz0OFpGGyF1eaciaq_C1OecfGeHFD5c2loKdleN_aOa4rzcO0M__DBJbncNWU6tsTPK7bDuipb9pv3_wBdbWXKj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear absorption in silicon nanocrystals</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Korovin, S B ; Orlov, A N ; Prokhorov, A M ; Pustovoi, V I ; Konstantaki, M ; Couris, S ; Koudoumas, E</creator><creatorcontrib>Korovin, S B ; Orlov, A N ; Prokhorov, A M ; Pustovoi, V I ; Konstantaki, M ; Couris, S ; Koudoumas, E</creatorcontrib><description>The nonlinear absorption of light in silicon nanocrystals suspended in glycerol is studied by the Z-scan method. The experimental data are used for calculating the nonlinear absorption coefficient {beta}{sub Si-gl} for silicon nanocrystals in glycerol (with a volume filling factor f=2x10{sup -4}), and the coefficient {beta}{sub Si} for pure silicon with a hypothetical volume filling factor f{approx}1. For the laser radiation wavelength {lambda}=497 nm and the pulse duration {tau}=0.5 ns, these coefficients are {beta}{sub Si-gl}=1.2x10{sup -8} cm W{sup -1} and {beta}{sub Si} =7.36x10{sup -5} cm W{sup -1}, while the corresponding values for {lambda}=532 nm and {tau}=10 ns are {beta}{sub Si-gl}=5.36x10{sup -5} cm W{sup -1} and {beta}{sub Si} =0.25 cm W{sup -1}. Experiments with 540-nm, 20-ps laser pulses performed for two different filling factors equal to 2x10{sup -4} and 3x10{sup -3} gave nonlinear absorption coefficients {beta}{sub Si-gl}=2x10{sup -7} and 3.6x10{sup -6} cm W{sup -1}, respectively. Optical absorption and Raman scattering spectra of silicon nanocrystals are also studied. A theoretical analysis of the experimental results shows that optical absorption can be related to the localisation of photoexcited carriers in the conduction band. The localisation is caused by the action of strong static electric fields on an electron in a nanoparticle. (nonlinear optical phenomena)</description><identifier>ISSN: 1063-7818</identifier><identifier>EISSN: 1468-4799</identifier><identifier>DOI: 10.1070/QE2001v031n09ABEH002052</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>ABSORPTION ; ALCOHOLS ; CARRIERS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DATA ; ELECTRIC FIELDS ; ELECTROMAGNETIC RADIATION ; ELECTRONS ; ELEMENTARY PARTICLES ; ELEMENTS ; EXPERIMENTAL DATA ; FERMIONS ; GLYCEROL ; HYDROXY COMPOUNDS ; INFORMATION ; LASER RADIATION ; LEPTONS ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOSTRUCTURES ; NONLINEAR PROBLEMS ; NUMERICAL DATA ; ORGANIC COMPOUNDS ; PULSES ; RADIATIONS ; RAMAN EFFECT ; SEMIMETALS ; SILICON ; SORPTION ; SPECTRA ; WAVELENGTHS</subject><ispartof>Quantum electronics (Woodbury, N.Y.), 2001-09, Vol.31 (9), p.817-820</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-5ac7e994fcea4c2b5690c4c183e735c859b92d6c8fa94269f16dc553a385963b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/QE2001v031n09ABEH002052/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53888</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21456806$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Korovin, S B</creatorcontrib><creatorcontrib>Orlov, A N</creatorcontrib><creatorcontrib>Prokhorov, A M</creatorcontrib><creatorcontrib>Pustovoi, V I</creatorcontrib><creatorcontrib>Konstantaki, M</creatorcontrib><creatorcontrib>Couris, S</creatorcontrib><creatorcontrib>Koudoumas, E</creatorcontrib><title>Nonlinear absorption in silicon nanocrystals</title><title>Quantum electronics (Woodbury, N.Y.)</title><description>The nonlinear absorption of light in silicon nanocrystals suspended in glycerol is studied by the Z-scan method. The experimental data are used for calculating the nonlinear absorption coefficient {beta}{sub Si-gl} for silicon nanocrystals in glycerol (with a volume filling factor f=2x10{sup -4}), and the coefficient {beta}{sub Si} for pure silicon with a hypothetical volume filling factor f{approx}1. For the laser radiation wavelength {lambda}=497 nm and the pulse duration {tau}=0.5 ns, these coefficients are {beta}{sub Si-gl}=1.2x10{sup -8} cm W{sup -1} and {beta}{sub Si} =7.36x10{sup -5} cm W{sup -1}, while the corresponding values for {lambda}=532 nm and {tau}=10 ns are {beta}{sub Si-gl}=5.36x10{sup -5} cm W{sup -1} and {beta}{sub Si} =0.25 cm W{sup -1}. Experiments with 540-nm, 20-ps laser pulses performed for two different filling factors equal to 2x10{sup -4} and 3x10{sup -3} gave nonlinear absorption coefficients {beta}{sub Si-gl}=2x10{sup -7} and 3.6x10{sup -6} cm W{sup -1}, respectively. Optical absorption and Raman scattering spectra of silicon nanocrystals are also studied. A theoretical analysis of the experimental results shows that optical absorption can be related to the localisation of photoexcited carriers in the conduction band. The localisation is caused by the action of strong static electric fields on an electron in a nanoparticle. (nonlinear optical phenomena)</description><subject>ABSORPTION</subject><subject>ALCOHOLS</subject><subject>CARRIERS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DATA</subject><subject>ELECTRIC FIELDS</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELECTRONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>ELEMENTS</subject><subject>EXPERIMENTAL DATA</subject><subject>FERMIONS</subject><subject>GLYCEROL</subject><subject>HYDROXY COMPOUNDS</subject><subject>INFORMATION</subject><subject>LASER RADIATION</subject><subject>LEPTONS</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOSTRUCTURES</subject><subject>NONLINEAR PROBLEMS</subject><subject>NUMERICAL DATA</subject><subject>ORGANIC COMPOUNDS</subject><subject>PULSES</subject><subject>RADIATIONS</subject><subject>RAMAN EFFECT</subject><subject>SEMIMETALS</subject><subject>SILICON</subject><subject>SORPTION</subject><subject>SPECTRA</subject><subject>WAVELENGTHS</subject><issn>1063-7818</issn><issn>1468-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgXf0NFjwJrr4km69jLdUKRRH0HLKvWYzU7JIsQv-9KfXgQT3NwJt5b94Qck7hmoKCm-cFA6CfwGkEM7tdLAEYCHZAJrSRum6UMYeFg-S10lQfk5Oc3wFAUckn5Oqxj5sQvUtT1-Y-DWPo4zTEaQ6bgIVGF3tM2zy6TT4lR10Bf_aNFXm9W7zMl_Xq6f5hPlvVyCWMtXCovDFNh941yFohDWCDVHOvuEAtTGvYWqLunGmYNB2VaxSCO15Gkre8Ihf7vX0eg80YRo9vJUz0OFpGGyF1eaciaq_C1OecfGeHFD5c2loKdleN_aOa4rzcO0M__DBJbncNWU6tsTPK7bDuipb9pv3_wBdbWXKj</recordid><startdate>20010930</startdate><enddate>20010930</enddate><creator>Korovin, S B</creator><creator>Orlov, A N</creator><creator>Prokhorov, A M</creator><creator>Pustovoi, V I</creator><creator>Konstantaki, M</creator><creator>Couris, S</creator><creator>Koudoumas, E</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20010930</creationdate><title>Nonlinear absorption in silicon nanocrystals</title><author>Korovin, S B ; Orlov, A N ; Prokhorov, A M ; Pustovoi, V I ; Konstantaki, M ; Couris, S ; Koudoumas, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-5ac7e994fcea4c2b5690c4c183e735c859b92d6c8fa94269f16dc553a385963b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>ABSORPTION</topic><topic>ALCOHOLS</topic><topic>CARRIERS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DATA</topic><topic>ELECTRIC FIELDS</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELECTRONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>ELEMENTS</topic><topic>EXPERIMENTAL DATA</topic><topic>FERMIONS</topic><topic>GLYCEROL</topic><topic>HYDROXY COMPOUNDS</topic><topic>INFORMATION</topic><topic>LASER RADIATION</topic><topic>LEPTONS</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOSTRUCTURES</topic><topic>NONLINEAR PROBLEMS</topic><topic>NUMERICAL DATA</topic><topic>ORGANIC COMPOUNDS</topic><topic>PULSES</topic><topic>RADIATIONS</topic><topic>RAMAN EFFECT</topic><topic>SEMIMETALS</topic><topic>SILICON</topic><topic>SORPTION</topic><topic>SPECTRA</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korovin, S B</creatorcontrib><creatorcontrib>Orlov, A N</creatorcontrib><creatorcontrib>Prokhorov, A M</creatorcontrib><creatorcontrib>Pustovoi, V I</creatorcontrib><creatorcontrib>Konstantaki, M</creatorcontrib><creatorcontrib>Couris, S</creatorcontrib><creatorcontrib>Koudoumas, E</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korovin, S B</au><au>Orlov, A N</au><au>Prokhorov, A M</au><au>Pustovoi, V I</au><au>Konstantaki, M</au><au>Couris, S</au><au>Koudoumas, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear absorption in silicon nanocrystals</atitle><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle><date>2001-09-30</date><risdate>2001</risdate><volume>31</volume><issue>9</issue><spage>817</spage><epage>820</epage><pages>817-820</pages><issn>1063-7818</issn><eissn>1468-4799</eissn><abstract>The nonlinear absorption of light in silicon nanocrystals suspended in glycerol is studied by the Z-scan method. The experimental data are used for calculating the nonlinear absorption coefficient {beta}{sub Si-gl} for silicon nanocrystals in glycerol (with a volume filling factor f=2x10{sup -4}), and the coefficient {beta}{sub Si} for pure silicon with a hypothetical volume filling factor f{approx}1. For the laser radiation wavelength {lambda}=497 nm and the pulse duration {tau}=0.5 ns, these coefficients are {beta}{sub Si-gl}=1.2x10{sup -8} cm W{sup -1} and {beta}{sub Si} =7.36x10{sup -5} cm W{sup -1}, while the corresponding values for {lambda}=532 nm and {tau}=10 ns are {beta}{sub Si-gl}=5.36x10{sup -5} cm W{sup -1} and {beta}{sub Si} =0.25 cm W{sup -1}. Experiments with 540-nm, 20-ps laser pulses performed for two different filling factors equal to 2x10{sup -4} and 3x10{sup -3} gave nonlinear absorption coefficients {beta}{sub Si-gl}=2x10{sup -7} and 3.6x10{sup -6} cm W{sup -1}, respectively. Optical absorption and Raman scattering spectra of silicon nanocrystals are also studied. A theoretical analysis of the experimental results shows that optical absorption can be related to the localisation of photoexcited carriers in the conduction band. The localisation is caused by the action of strong static electric fields on an electron in a nanoparticle. (nonlinear optical phenomena)</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1070/QE2001v031n09ABEH002052</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7818
ispartof Quantum electronics (Woodbury, N.Y.), 2001-09, Vol.31 (9), p.817-820
issn 1063-7818
1468-4799
language eng
recordid cdi_osti_scitechconnect_21456806
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects ABSORPTION
ALCOHOLS
CARRIERS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
DATA
ELECTRIC FIELDS
ELECTROMAGNETIC RADIATION
ELECTRONS
ELEMENTARY PARTICLES
ELEMENTS
EXPERIMENTAL DATA
FERMIONS
GLYCEROL
HYDROXY COMPOUNDS
INFORMATION
LASER RADIATION
LEPTONS
NANOSCIENCE AND NANOTECHNOLOGY
NANOSTRUCTURES
NONLINEAR PROBLEMS
NUMERICAL DATA
ORGANIC COMPOUNDS
PULSES
RADIATIONS
RAMAN EFFECT
SEMIMETALS
SILICON
SORPTION
SPECTRA
WAVELENGTHS
title Nonlinear absorption in silicon nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20absorption%20in%20silicon%20nanocrystals&rft.jtitle=Quantum%20electronics%20(Woodbury,%20N.Y.)&rft.au=Korovin,%20S%20B&rft.date=2001-09-30&rft.volume=31&rft.issue=9&rft.spage=817&rft.epage=820&rft.pages=817-820&rft.issn=1063-7818&rft.eissn=1468-4799&rft_id=info:doi/10.1070/QE2001v031n09ABEH002052&rft_dat=%3Ciop_osti_%3E10_1070_QE2001v031n09ABEH002052%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true