Nonlinear absorption in silicon nanocrystals
The nonlinear absorption of light in silicon nanocrystals suspended in glycerol is studied by the Z-scan method. The experimental data are used for calculating the nonlinear absorption coefficient {beta}{sub Si-gl} for silicon nanocrystals in glycerol (with a volume filling factor f=2x10{sup -4}), a...
Gespeichert in:
Veröffentlicht in: | Quantum electronics (Woodbury, N.Y.) N.Y.), 2001-09, Vol.31 (9), p.817-820 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 820 |
---|---|
container_issue | 9 |
container_start_page | 817 |
container_title | Quantum electronics (Woodbury, N.Y.) |
container_volume | 31 |
creator | Korovin, S B Orlov, A N Prokhorov, A M Pustovoi, V I Konstantaki, M Couris, S Koudoumas, E |
description | The nonlinear absorption of light in silicon nanocrystals suspended in glycerol is studied by the Z-scan method. The experimental data are used for calculating the nonlinear absorption coefficient {beta}{sub Si-gl} for silicon nanocrystals in glycerol (with a volume filling factor f=2x10{sup -4}), and the coefficient {beta}{sub Si} for pure silicon with a hypothetical volume filling factor f{approx}1. For the laser radiation wavelength {lambda}=497 nm and the pulse duration {tau}=0.5 ns, these coefficients are {beta}{sub Si-gl}=1.2x10{sup -8} cm W{sup -1} and {beta}{sub Si} =7.36x10{sup -5} cm W{sup -1}, while the corresponding values for {lambda}=532 nm and {tau}=10 ns are {beta}{sub Si-gl}=5.36x10{sup -5} cm W{sup -1} and {beta}{sub Si} =0.25 cm W{sup -1}. Experiments with 540-nm, 20-ps laser pulses performed for two different filling factors equal to 2x10{sup -4} and 3x10{sup -3} gave nonlinear absorption coefficients {beta}{sub Si-gl}=2x10{sup -7} and 3.6x10{sup -6} cm W{sup -1}, respectively. Optical absorption and Raman scattering spectra of silicon nanocrystals are also studied. A theoretical analysis of the experimental results shows that optical absorption can be related to the localisation of photoexcited carriers in the conduction band. The localisation is caused by the action of strong static electric fields on an electron in a nanoparticle. (nonlinear optical phenomena) |
doi_str_mv | 10.1070/QE2001v031n09ABEH002052 |
format | Article |
fullrecord | <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21456806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1070_QE2001v031n09ABEH002052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-5ac7e994fcea4c2b5690c4c183e735c859b92d6c8fa94269f16dc553a385963b3</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgXf0NFjwJrr4km69jLdUKRRH0HLKvWYzU7JIsQv-9KfXgQT3NwJt5b94Qck7hmoKCm-cFA6CfwGkEM7tdLAEYCHZAJrSRum6UMYeFg-S10lQfk5Oc3wFAUckn5Oqxj5sQvUtT1-Y-DWPo4zTEaQ6bgIVGF3tM2zy6TT4lR10Bf_aNFXm9W7zMl_Xq6f5hPlvVyCWMtXCovDFNh941yFohDWCDVHOvuEAtTGvYWqLunGmYNB2VaxSCO15Gkre8Ihf7vX0eg80YRo9vJUz0OFpGGyF1eaciaq_C1OecfGeHFD5c2loKdleN_aOa4rzcO0M__DBJbncNWU6tsTPK7bDuipb9pv3_wBdbWXKj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear absorption in silicon nanocrystals</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Korovin, S B ; Orlov, A N ; Prokhorov, A M ; Pustovoi, V I ; Konstantaki, M ; Couris, S ; Koudoumas, E</creator><creatorcontrib>Korovin, S B ; Orlov, A N ; Prokhorov, A M ; Pustovoi, V I ; Konstantaki, M ; Couris, S ; Koudoumas, E</creatorcontrib><description>The nonlinear absorption of light in silicon nanocrystals suspended in glycerol is studied by the Z-scan method. The experimental data are used for calculating the nonlinear absorption coefficient {beta}{sub Si-gl} for silicon nanocrystals in glycerol (with a volume filling factor f=2x10{sup -4}), and the coefficient {beta}{sub Si} for pure silicon with a hypothetical volume filling factor f{approx}1. For the laser radiation wavelength {lambda}=497 nm and the pulse duration {tau}=0.5 ns, these coefficients are {beta}{sub Si-gl}=1.2x10{sup -8} cm W{sup -1} and {beta}{sub Si} =7.36x10{sup -5} cm W{sup -1}, while the corresponding values for {lambda}=532 nm and {tau}=10 ns are {beta}{sub Si-gl}=5.36x10{sup -5} cm W{sup -1} and {beta}{sub Si} =0.25 cm W{sup -1}. Experiments with 540-nm, 20-ps laser pulses performed for two different filling factors equal to 2x10{sup -4} and 3x10{sup -3} gave nonlinear absorption coefficients {beta}{sub Si-gl}=2x10{sup -7} and 3.6x10{sup -6} cm W{sup -1}, respectively. Optical absorption and Raman scattering spectra of silicon nanocrystals are also studied. A theoretical analysis of the experimental results shows that optical absorption can be related to the localisation of photoexcited carriers in the conduction band. The localisation is caused by the action of strong static electric fields on an electron in a nanoparticle. (nonlinear optical phenomena)</description><identifier>ISSN: 1063-7818</identifier><identifier>EISSN: 1468-4799</identifier><identifier>DOI: 10.1070/QE2001v031n09ABEH002052</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>ABSORPTION ; ALCOHOLS ; CARRIERS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DATA ; ELECTRIC FIELDS ; ELECTROMAGNETIC RADIATION ; ELECTRONS ; ELEMENTARY PARTICLES ; ELEMENTS ; EXPERIMENTAL DATA ; FERMIONS ; GLYCEROL ; HYDROXY COMPOUNDS ; INFORMATION ; LASER RADIATION ; LEPTONS ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOSTRUCTURES ; NONLINEAR PROBLEMS ; NUMERICAL DATA ; ORGANIC COMPOUNDS ; PULSES ; RADIATIONS ; RAMAN EFFECT ; SEMIMETALS ; SILICON ; SORPTION ; SPECTRA ; WAVELENGTHS</subject><ispartof>Quantum electronics (Woodbury, N.Y.), 2001-09, Vol.31 (9), p.817-820</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-5ac7e994fcea4c2b5690c4c183e735c859b92d6c8fa94269f16dc553a385963b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/QE2001v031n09ABEH002052/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27903,27904,53888</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21456806$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Korovin, S B</creatorcontrib><creatorcontrib>Orlov, A N</creatorcontrib><creatorcontrib>Prokhorov, A M</creatorcontrib><creatorcontrib>Pustovoi, V I</creatorcontrib><creatorcontrib>Konstantaki, M</creatorcontrib><creatorcontrib>Couris, S</creatorcontrib><creatorcontrib>Koudoumas, E</creatorcontrib><title>Nonlinear absorption in silicon nanocrystals</title><title>Quantum electronics (Woodbury, N.Y.)</title><description>The nonlinear absorption of light in silicon nanocrystals suspended in glycerol is studied by the Z-scan method. The experimental data are used for calculating the nonlinear absorption coefficient {beta}{sub Si-gl} for silicon nanocrystals in glycerol (with a volume filling factor f=2x10{sup -4}), and the coefficient {beta}{sub Si} for pure silicon with a hypothetical volume filling factor f{approx}1. For the laser radiation wavelength {lambda}=497 nm and the pulse duration {tau}=0.5 ns, these coefficients are {beta}{sub Si-gl}=1.2x10{sup -8} cm W{sup -1} and {beta}{sub Si} =7.36x10{sup -5} cm W{sup -1}, while the corresponding values for {lambda}=532 nm and {tau}=10 ns are {beta}{sub Si-gl}=5.36x10{sup -5} cm W{sup -1} and {beta}{sub Si} =0.25 cm W{sup -1}. Experiments with 540-nm, 20-ps laser pulses performed for two different filling factors equal to 2x10{sup -4} and 3x10{sup -3} gave nonlinear absorption coefficients {beta}{sub Si-gl}=2x10{sup -7} and 3.6x10{sup -6} cm W{sup -1}, respectively. Optical absorption and Raman scattering spectra of silicon nanocrystals are also studied. A theoretical analysis of the experimental results shows that optical absorption can be related to the localisation of photoexcited carriers in the conduction band. The localisation is caused by the action of strong static electric fields on an electron in a nanoparticle. (nonlinear optical phenomena)</description><subject>ABSORPTION</subject><subject>ALCOHOLS</subject><subject>CARRIERS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DATA</subject><subject>ELECTRIC FIELDS</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELECTRONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>ELEMENTS</subject><subject>EXPERIMENTAL DATA</subject><subject>FERMIONS</subject><subject>GLYCEROL</subject><subject>HYDROXY COMPOUNDS</subject><subject>INFORMATION</subject><subject>LASER RADIATION</subject><subject>LEPTONS</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOSTRUCTURES</subject><subject>NONLINEAR PROBLEMS</subject><subject>NUMERICAL DATA</subject><subject>ORGANIC COMPOUNDS</subject><subject>PULSES</subject><subject>RADIATIONS</subject><subject>RAMAN EFFECT</subject><subject>SEMIMETALS</subject><subject>SILICON</subject><subject>SORPTION</subject><subject>SPECTRA</subject><subject>WAVELENGTHS</subject><issn>1063-7818</issn><issn>1468-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgXf0NFjwJrr4km69jLdUKRRH0HLKvWYzU7JIsQv-9KfXgQT3NwJt5b94Qck7hmoKCm-cFA6CfwGkEM7tdLAEYCHZAJrSRum6UMYeFg-S10lQfk5Oc3wFAUckn5Oqxj5sQvUtT1-Y-DWPo4zTEaQ6bgIVGF3tM2zy6TT4lR10Bf_aNFXm9W7zMl_Xq6f5hPlvVyCWMtXCovDFNh941yFohDWCDVHOvuEAtTGvYWqLunGmYNB2VaxSCO15Gkre8Ihf7vX0eg80YRo9vJUz0OFpGGyF1eaciaq_C1OecfGeHFD5c2loKdleN_aOa4rzcO0M__DBJbncNWU6tsTPK7bDuipb9pv3_wBdbWXKj</recordid><startdate>20010930</startdate><enddate>20010930</enddate><creator>Korovin, S B</creator><creator>Orlov, A N</creator><creator>Prokhorov, A M</creator><creator>Pustovoi, V I</creator><creator>Konstantaki, M</creator><creator>Couris, S</creator><creator>Koudoumas, E</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20010930</creationdate><title>Nonlinear absorption in silicon nanocrystals</title><author>Korovin, S B ; Orlov, A N ; Prokhorov, A M ; Pustovoi, V I ; Konstantaki, M ; Couris, S ; Koudoumas, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-5ac7e994fcea4c2b5690c4c183e735c859b92d6c8fa94269f16dc553a385963b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>ABSORPTION</topic><topic>ALCOHOLS</topic><topic>CARRIERS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DATA</topic><topic>ELECTRIC FIELDS</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELECTRONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>ELEMENTS</topic><topic>EXPERIMENTAL DATA</topic><topic>FERMIONS</topic><topic>GLYCEROL</topic><topic>HYDROXY COMPOUNDS</topic><topic>INFORMATION</topic><topic>LASER RADIATION</topic><topic>LEPTONS</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOSTRUCTURES</topic><topic>NONLINEAR PROBLEMS</topic><topic>NUMERICAL DATA</topic><topic>ORGANIC COMPOUNDS</topic><topic>PULSES</topic><topic>RADIATIONS</topic><topic>RAMAN EFFECT</topic><topic>SEMIMETALS</topic><topic>SILICON</topic><topic>SORPTION</topic><topic>SPECTRA</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korovin, S B</creatorcontrib><creatorcontrib>Orlov, A N</creatorcontrib><creatorcontrib>Prokhorov, A M</creatorcontrib><creatorcontrib>Pustovoi, V I</creatorcontrib><creatorcontrib>Konstantaki, M</creatorcontrib><creatorcontrib>Couris, S</creatorcontrib><creatorcontrib>Koudoumas, E</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korovin, S B</au><au>Orlov, A N</au><au>Prokhorov, A M</au><au>Pustovoi, V I</au><au>Konstantaki, M</au><au>Couris, S</au><au>Koudoumas, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear absorption in silicon nanocrystals</atitle><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle><date>2001-09-30</date><risdate>2001</risdate><volume>31</volume><issue>9</issue><spage>817</spage><epage>820</epage><pages>817-820</pages><issn>1063-7818</issn><eissn>1468-4799</eissn><abstract>The nonlinear absorption of light in silicon nanocrystals suspended in glycerol is studied by the Z-scan method. The experimental data are used for calculating the nonlinear absorption coefficient {beta}{sub Si-gl} for silicon nanocrystals in glycerol (with a volume filling factor f=2x10{sup -4}), and the coefficient {beta}{sub Si} for pure silicon with a hypothetical volume filling factor f{approx}1. For the laser radiation wavelength {lambda}=497 nm and the pulse duration {tau}=0.5 ns, these coefficients are {beta}{sub Si-gl}=1.2x10{sup -8} cm W{sup -1} and {beta}{sub Si} =7.36x10{sup -5} cm W{sup -1}, while the corresponding values for {lambda}=532 nm and {tau}=10 ns are {beta}{sub Si-gl}=5.36x10{sup -5} cm W{sup -1} and {beta}{sub Si} =0.25 cm W{sup -1}. Experiments with 540-nm, 20-ps laser pulses performed for two different filling factors equal to 2x10{sup -4} and 3x10{sup -3} gave nonlinear absorption coefficients {beta}{sub Si-gl}=2x10{sup -7} and 3.6x10{sup -6} cm W{sup -1}, respectively. Optical absorption and Raman scattering spectra of silicon nanocrystals are also studied. A theoretical analysis of the experimental results shows that optical absorption can be related to the localisation of photoexcited carriers in the conduction band. The localisation is caused by the action of strong static electric fields on an electron in a nanoparticle. (nonlinear optical phenomena)</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1070/QE2001v031n09ABEH002052</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7818 |
ispartof | Quantum electronics (Woodbury, N.Y.), 2001-09, Vol.31 (9), p.817-820 |
issn | 1063-7818 1468-4799 |
language | eng |
recordid | cdi_osti_scitechconnect_21456806 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | ABSORPTION ALCOHOLS CARRIERS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DATA ELECTRIC FIELDS ELECTROMAGNETIC RADIATION ELECTRONS ELEMENTARY PARTICLES ELEMENTS EXPERIMENTAL DATA FERMIONS GLYCEROL HYDROXY COMPOUNDS INFORMATION LASER RADIATION LEPTONS NANOSCIENCE AND NANOTECHNOLOGY NANOSTRUCTURES NONLINEAR PROBLEMS NUMERICAL DATA ORGANIC COMPOUNDS PULSES RADIATIONS RAMAN EFFECT SEMIMETALS SILICON SORPTION SPECTRA WAVELENGTHS |
title | Nonlinear absorption in silicon nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20absorption%20in%20silicon%20nanocrystals&rft.jtitle=Quantum%20electronics%20(Woodbury,%20N.Y.)&rft.au=Korovin,%20S%20B&rft.date=2001-09-30&rft.volume=31&rft.issue=9&rft.spage=817&rft.epage=820&rft.pages=817-820&rft.issn=1063-7818&rft.eissn=1468-4799&rft_id=info:doi/10.1070/QE2001v031n09ABEH002052&rft_dat=%3Ciop_osti_%3E10_1070_QE2001v031n09ABEH002052%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |