Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter
The equation of state of hadron resonance gas at finite temperature and baryon density is calculated taking into account finite-size effects within the excluded-volume model. Contributions of known hadrons with masses up to 2 GeV are included in the zero-width approximation. Special attention is pai...
Gespeichert in:
Veröffentlicht in: | Physics of atomic nuclei 2009-08, Vol.72 (8), p.1390-1415 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1415 |
---|---|
container_issue | 8 |
container_start_page | 1390 |
container_title | Physics of atomic nuclei |
container_volume | 72 |
creator | Satarov, L. M. Dmitriev, M. N. Mishustin, I. N. |
description | The equation of state of hadron resonance gas at finite temperature and baryon density is calculated taking into account finite-size effects within the excluded-volume model. Contributions of known hadrons with masses up to 2 GeV are included in the zero-width approximation. Special attention is paid to the role of strange hadrons in the system with zero total strangeness. A density-dependent mean field is added to guarantee that the nuclear matter has a saturation point and a liquid-gas phase transition. The deconfined phase is described by the bag model with lowest order perturbative corrections. The phasetransition boundaries are found by using the Gibbs conditions with the strangeness neutrality constraint. The sensitivity of the phase diagram to the hadronic excluded volume and to the parametrization of the mean-field is investigated. The possibility of strangeness-antistrangeness separation in the mixed phase is analyzed. It is demonstrated that the peaks in the
K/π
and Λ/
π
excitation functions observed at low SPS energies can be explained by a nonmonotonous behavior of the strangeness fugacity along the chemical freeze-out line. |
doi_str_mv | 10.1134/S1063778809080146 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21455276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1063778809080146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-366bc125594a990e08b68a87420a966be2d33ca65097d29d383ab8e9e6038dc3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwAdgsMQf8J3bsEVWFIlVioAMT0dW5Jqlap9ju0G-Pq7AhMd27e-930h0h95w9ci7Lpw_OtKwqY5hlhvFSX5AJV1oU2orPy6yzXZz9a3IT45Yxzo1iE_I1_z5C6gdPhw2NCRKeRQdNyKOAcfDgHdIWIgXf0NQhPXQQkTY9tAH2I5bD7e5Ee58wgEu9b-keUm5uydUGdhHvfuuUrF7mq9miWL6_vs2el4UrhUqF1HrtuFDKlmAtQ2bW2oCpSsHAZg9FI6UDrZitGmEbaSSsDVrUTJrGySl5GNcOMfV1dH1C17nBe3SpFrxUSlQ6p_iYcmGIMeCmPoR-D-FUc1afv1j_-WJmxMjEnPUthno7HIPPt_wD_QCAcHPV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter</title><source>SpringerLink Journals - AutoHoldings</source><creator>Satarov, L. M. ; Dmitriev, M. N. ; Mishustin, I. N.</creator><creatorcontrib>Satarov, L. M. ; Dmitriev, M. N. ; Mishustin, I. N.</creatorcontrib><description>The equation of state of hadron resonance gas at finite temperature and baryon density is calculated taking into account finite-size effects within the excluded-volume model. Contributions of known hadrons with masses up to 2 GeV are included in the zero-width approximation. Special attention is paid to the role of strange hadrons in the system with zero total strangeness. A density-dependent mean field is added to guarantee that the nuclear matter has a saturation point and a liquid-gas phase transition. The deconfined phase is described by the bag model with lowest order perturbative corrections. The phasetransition boundaries are found by using the Gibbs conditions with the strangeness neutrality constraint. The sensitivity of the phase diagram to the hadronic excluded volume and to the parametrization of the mean-field is investigated. The possibility of strangeness-antistrangeness separation in the mixed phase is analyzed. It is demonstrated that the peaks in the
K/π
and Λ/
π
excitation functions observed at low SPS energies can be explained by a nonmonotonous behavior of the strangeness fugacity along the chemical freeze-out line.</description><identifier>ISSN: 1063-7788</identifier><identifier>EISSN: 1562-692X</identifier><identifier>DOI: 10.1134/S1063778809080146</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>APPROXIMATIONS ; BAG MODEL ; BARYONS ; CALCULATION METHODS ; COMPOSITE MODELS ; CROSS SECTIONS ; DIAGRAMS ; DIFFERENTIAL CROSS SECTIONS ; ELEMENTARY PARTICLES ; Elementary Particles and Fields ; ENERGY RANGE ; EQUATIONS ; EQUATIONS OF STATE ; EXCITATION FUNCTIONS ; EXTENDED PARTICLE MODEL ; FERMIONS ; FUNCTIONS ; GEV RANGE ; HADRONS ; INFORMATION ; MATHEMATICAL MODELS ; MATTER ; MEAN-FIELD THEORY ; NUCLEAR MATTER ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Particle and Nuclear Physics ; PARTICLE MODELS ; PARTICLE PROPERTIES ; PHASE DIAGRAMS ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUARK MODEL ; STRANGENESS</subject><ispartof>Physics of atomic nuclei, 2009-08, Vol.72 (8), p.1390-1415</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-366bc125594a990e08b68a87420a966be2d33ca65097d29d383ab8e9e6038dc3</citedby><cites>FETCH-LOGICAL-c425t-366bc125594a990e08b68a87420a966be2d33ca65097d29d383ab8e9e6038dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063778809080146$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063778809080146$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21455276$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Satarov, L. M.</creatorcontrib><creatorcontrib>Dmitriev, M. N.</creatorcontrib><creatorcontrib>Mishustin, I. N.</creatorcontrib><title>Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter</title><title>Physics of atomic nuclei</title><addtitle>Phys. Atom. Nuclei</addtitle><description>The equation of state of hadron resonance gas at finite temperature and baryon density is calculated taking into account finite-size effects within the excluded-volume model. Contributions of known hadrons with masses up to 2 GeV are included in the zero-width approximation. Special attention is paid to the role of strange hadrons in the system with zero total strangeness. A density-dependent mean field is added to guarantee that the nuclear matter has a saturation point and a liquid-gas phase transition. The deconfined phase is described by the bag model with lowest order perturbative corrections. The phasetransition boundaries are found by using the Gibbs conditions with the strangeness neutrality constraint. The sensitivity of the phase diagram to the hadronic excluded volume and to the parametrization of the mean-field is investigated. The possibility of strangeness-antistrangeness separation in the mixed phase is analyzed. It is demonstrated that the peaks in the
K/π
and Λ/
π
excitation functions observed at low SPS energies can be explained by a nonmonotonous behavior of the strangeness fugacity along the chemical freeze-out line.</description><subject>APPROXIMATIONS</subject><subject>BAG MODEL</subject><subject>BARYONS</subject><subject>CALCULATION METHODS</subject><subject>COMPOSITE MODELS</subject><subject>CROSS SECTIONS</subject><subject>DIAGRAMS</subject><subject>DIFFERENTIAL CROSS SECTIONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>Elementary Particles and Fields</subject><subject>ENERGY RANGE</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF STATE</subject><subject>EXCITATION FUNCTIONS</subject><subject>EXTENDED PARTICLE MODEL</subject><subject>FERMIONS</subject><subject>FUNCTIONS</subject><subject>GEV RANGE</subject><subject>HADRONS</subject><subject>INFORMATION</subject><subject>MATHEMATICAL MODELS</subject><subject>MATTER</subject><subject>MEAN-FIELD THEORY</subject><subject>NUCLEAR MATTER</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Particle and Nuclear Physics</subject><subject>PARTICLE MODELS</subject><subject>PARTICLE PROPERTIES</subject><subject>PHASE DIAGRAMS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUARK MODEL</subject><subject>STRANGENESS</subject><issn>1063-7788</issn><issn>1562-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwAdgsMQf8J3bsEVWFIlVioAMT0dW5Jqlap9ju0G-Pq7AhMd27e-930h0h95w9ci7Lpw_OtKwqY5hlhvFSX5AJV1oU2orPy6yzXZz9a3IT45Yxzo1iE_I1_z5C6gdPhw2NCRKeRQdNyKOAcfDgHdIWIgXf0NQhPXQQkTY9tAH2I5bD7e5Ee58wgEu9b-keUm5uydUGdhHvfuuUrF7mq9miWL6_vs2el4UrhUqF1HrtuFDKlmAtQ2bW2oCpSsHAZg9FI6UDrZitGmEbaSSsDVrUTJrGySl5GNcOMfV1dH1C17nBe3SpFrxUSlQ6p_iYcmGIMeCmPoR-D-FUc1afv1j_-WJmxMjEnPUthno7HIPPt_wD_QCAcHPV</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Satarov, L. M.</creator><creator>Dmitriev, M. N.</creator><creator>Mishustin, I. N.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090801</creationdate><title>Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter</title><author>Satarov, L. M. ; Dmitriev, M. N. ; Mishustin, I. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-366bc125594a990e08b68a87420a966be2d33ca65097d29d383ab8e9e6038dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>APPROXIMATIONS</topic><topic>BAG MODEL</topic><topic>BARYONS</topic><topic>CALCULATION METHODS</topic><topic>COMPOSITE MODELS</topic><topic>CROSS SECTIONS</topic><topic>DIAGRAMS</topic><topic>DIFFERENTIAL CROSS SECTIONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>Elementary Particles and Fields</topic><topic>ENERGY RANGE</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF STATE</topic><topic>EXCITATION FUNCTIONS</topic><topic>EXTENDED PARTICLE MODEL</topic><topic>FERMIONS</topic><topic>FUNCTIONS</topic><topic>GEV RANGE</topic><topic>HADRONS</topic><topic>INFORMATION</topic><topic>MATHEMATICAL MODELS</topic><topic>MATTER</topic><topic>MEAN-FIELD THEORY</topic><topic>NUCLEAR MATTER</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Particle and Nuclear Physics</topic><topic>PARTICLE MODELS</topic><topic>PARTICLE PROPERTIES</topic><topic>PHASE DIAGRAMS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUARK MODEL</topic><topic>STRANGENESS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satarov, L. M.</creatorcontrib><creatorcontrib>Dmitriev, M. N.</creatorcontrib><creatorcontrib>Mishustin, I. N.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of atomic nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satarov, L. M.</au><au>Dmitriev, M. N.</au><au>Mishustin, I. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter</atitle><jtitle>Physics of atomic nuclei</jtitle><stitle>Phys. Atom. Nuclei</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>72</volume><issue>8</issue><spage>1390</spage><epage>1415</epage><pages>1390-1415</pages><issn>1063-7788</issn><eissn>1562-692X</eissn><abstract>The equation of state of hadron resonance gas at finite temperature and baryon density is calculated taking into account finite-size effects within the excluded-volume model. Contributions of known hadrons with masses up to 2 GeV are included in the zero-width approximation. Special attention is paid to the role of strange hadrons in the system with zero total strangeness. A density-dependent mean field is added to guarantee that the nuclear matter has a saturation point and a liquid-gas phase transition. The deconfined phase is described by the bag model with lowest order perturbative corrections. The phasetransition boundaries are found by using the Gibbs conditions with the strangeness neutrality constraint. The sensitivity of the phase diagram to the hadronic excluded volume and to the parametrization of the mean-field is investigated. The possibility of strangeness-antistrangeness separation in the mixed phase is analyzed. It is demonstrated that the peaks in the
K/π
and Λ/
π
excitation functions observed at low SPS energies can be explained by a nonmonotonous behavior of the strangeness fugacity along the chemical freeze-out line.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1063778809080146</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7788 |
ispartof | Physics of atomic nuclei, 2009-08, Vol.72 (8), p.1390-1415 |
issn | 1063-7788 1562-692X |
language | eng |
recordid | cdi_osti_scitechconnect_21455276 |
source | SpringerLink Journals - AutoHoldings |
subjects | APPROXIMATIONS BAG MODEL BARYONS CALCULATION METHODS COMPOSITE MODELS CROSS SECTIONS DIAGRAMS DIFFERENTIAL CROSS SECTIONS ELEMENTARY PARTICLES Elementary Particles and Fields ENERGY RANGE EQUATIONS EQUATIONS OF STATE EXCITATION FUNCTIONS EXTENDED PARTICLE MODEL FERMIONS FUNCTIONS GEV RANGE HADRONS INFORMATION MATHEMATICAL MODELS MATTER MEAN-FIELD THEORY NUCLEAR MATTER NUCLEAR PHYSICS AND RADIATION PHYSICS Particle and Nuclear Physics PARTICLE MODELS PARTICLE PROPERTIES PHASE DIAGRAMS Physics Physics and Astronomy PHYSICS OF ELEMENTARY PARTICLES AND FIELDS QUARK MODEL STRANGENESS |
title | Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equation%20of%20state%20of%20hadron%20resonance%20gas%20and%20the%20phase%20diagram%20of%20strongly%20interacting%20matter&rft.jtitle=Physics%20of%20atomic%20nuclei&rft.au=Satarov,%20L.%20M.&rft.date=2009-08-01&rft.volume=72&rft.issue=8&rft.spage=1390&rft.epage=1415&rft.pages=1390-1415&rft.issn=1063-7788&rft.eissn=1562-692X&rft_id=info:doi/10.1134/S1063778809080146&rft_dat=%3Ccrossref_osti_%3E10_1134_S1063778809080146%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |