Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter

The equation of state of hadron resonance gas at finite temperature and baryon density is calculated taking into account finite-size effects within the excluded-volume model. Contributions of known hadrons with masses up to 2 GeV are included in the zero-width approximation. Special attention is pai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of atomic nuclei 2009-08, Vol.72 (8), p.1390-1415
Hauptverfasser: Satarov, L. M., Dmitriev, M. N., Mishustin, I. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1415
container_issue 8
container_start_page 1390
container_title Physics of atomic nuclei
container_volume 72
creator Satarov, L. M.
Dmitriev, M. N.
Mishustin, I. N.
description The equation of state of hadron resonance gas at finite temperature and baryon density is calculated taking into account finite-size effects within the excluded-volume model. Contributions of known hadrons with masses up to 2 GeV are included in the zero-width approximation. Special attention is paid to the role of strange hadrons in the system with zero total strangeness. A density-dependent mean field is added to guarantee that the nuclear matter has a saturation point and a liquid-gas phase transition. The deconfined phase is described by the bag model with lowest order perturbative corrections. The phasetransition boundaries are found by using the Gibbs conditions with the strangeness neutrality constraint. The sensitivity of the phase diagram to the hadronic excluded volume and to the parametrization of the mean-field is investigated. The possibility of strangeness-antistrangeness separation in the mixed phase is analyzed. It is demonstrated that the peaks in the K/π and Λ/ π excitation functions observed at low SPS energies can be explained by a nonmonotonous behavior of the strangeness fugacity along the chemical freeze-out line.
doi_str_mv 10.1134/S1063778809080146
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21455276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1063778809080146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-366bc125594a990e08b68a87420a966be2d33ca65097d29d383ab8e9e6038dc3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwAdgsMQf8J3bsEVWFIlVioAMT0dW5Jqlap9ju0G-Pq7AhMd27e-930h0h95w9ci7Lpw_OtKwqY5hlhvFSX5AJV1oU2orPy6yzXZz9a3IT45Yxzo1iE_I1_z5C6gdPhw2NCRKeRQdNyKOAcfDgHdIWIgXf0NQhPXQQkTY9tAH2I5bD7e5Ee58wgEu9b-keUm5uydUGdhHvfuuUrF7mq9miWL6_vs2el4UrhUqF1HrtuFDKlmAtQ2bW2oCpSsHAZg9FI6UDrZitGmEbaSSsDVrUTJrGySl5GNcOMfV1dH1C17nBe3SpFrxUSlQ6p_iYcmGIMeCmPoR-D-FUc1afv1j_-WJmxMjEnPUthno7HIPPt_wD_QCAcHPV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter</title><source>SpringerLink Journals - AutoHoldings</source><creator>Satarov, L. M. ; Dmitriev, M. N. ; Mishustin, I. N.</creator><creatorcontrib>Satarov, L. M. ; Dmitriev, M. N. ; Mishustin, I. N.</creatorcontrib><description>The equation of state of hadron resonance gas at finite temperature and baryon density is calculated taking into account finite-size effects within the excluded-volume model. Contributions of known hadrons with masses up to 2 GeV are included in the zero-width approximation. Special attention is paid to the role of strange hadrons in the system with zero total strangeness. A density-dependent mean field is added to guarantee that the nuclear matter has a saturation point and a liquid-gas phase transition. The deconfined phase is described by the bag model with lowest order perturbative corrections. The phasetransition boundaries are found by using the Gibbs conditions with the strangeness neutrality constraint. The sensitivity of the phase diagram to the hadronic excluded volume and to the parametrization of the mean-field is investigated. The possibility of strangeness-antistrangeness separation in the mixed phase is analyzed. It is demonstrated that the peaks in the K/π and Λ/ π excitation functions observed at low SPS energies can be explained by a nonmonotonous behavior of the strangeness fugacity along the chemical freeze-out line.</description><identifier>ISSN: 1063-7788</identifier><identifier>EISSN: 1562-692X</identifier><identifier>DOI: 10.1134/S1063778809080146</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>APPROXIMATIONS ; BAG MODEL ; BARYONS ; CALCULATION METHODS ; COMPOSITE MODELS ; CROSS SECTIONS ; DIAGRAMS ; DIFFERENTIAL CROSS SECTIONS ; ELEMENTARY PARTICLES ; Elementary Particles and Fields ; ENERGY RANGE ; EQUATIONS ; EQUATIONS OF STATE ; EXCITATION FUNCTIONS ; EXTENDED PARTICLE MODEL ; FERMIONS ; FUNCTIONS ; GEV RANGE ; HADRONS ; INFORMATION ; MATHEMATICAL MODELS ; MATTER ; MEAN-FIELD THEORY ; NUCLEAR MATTER ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Particle and Nuclear Physics ; PARTICLE MODELS ; PARTICLE PROPERTIES ; PHASE DIAGRAMS ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QUARK MODEL ; STRANGENESS</subject><ispartof>Physics of atomic nuclei, 2009-08, Vol.72 (8), p.1390-1415</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-366bc125594a990e08b68a87420a966be2d33ca65097d29d383ab8e9e6038dc3</citedby><cites>FETCH-LOGICAL-c425t-366bc125594a990e08b68a87420a966be2d33ca65097d29d383ab8e9e6038dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063778809080146$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063778809080146$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21455276$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Satarov, L. M.</creatorcontrib><creatorcontrib>Dmitriev, M. N.</creatorcontrib><creatorcontrib>Mishustin, I. N.</creatorcontrib><title>Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter</title><title>Physics of atomic nuclei</title><addtitle>Phys. Atom. Nuclei</addtitle><description>The equation of state of hadron resonance gas at finite temperature and baryon density is calculated taking into account finite-size effects within the excluded-volume model. Contributions of known hadrons with masses up to 2 GeV are included in the zero-width approximation. Special attention is paid to the role of strange hadrons in the system with zero total strangeness. A density-dependent mean field is added to guarantee that the nuclear matter has a saturation point and a liquid-gas phase transition. The deconfined phase is described by the bag model with lowest order perturbative corrections. The phasetransition boundaries are found by using the Gibbs conditions with the strangeness neutrality constraint. The sensitivity of the phase diagram to the hadronic excluded volume and to the parametrization of the mean-field is investigated. The possibility of strangeness-antistrangeness separation in the mixed phase is analyzed. It is demonstrated that the peaks in the K/π and Λ/ π excitation functions observed at low SPS energies can be explained by a nonmonotonous behavior of the strangeness fugacity along the chemical freeze-out line.</description><subject>APPROXIMATIONS</subject><subject>BAG MODEL</subject><subject>BARYONS</subject><subject>CALCULATION METHODS</subject><subject>COMPOSITE MODELS</subject><subject>CROSS SECTIONS</subject><subject>DIAGRAMS</subject><subject>DIFFERENTIAL CROSS SECTIONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>Elementary Particles and Fields</subject><subject>ENERGY RANGE</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF STATE</subject><subject>EXCITATION FUNCTIONS</subject><subject>EXTENDED PARTICLE MODEL</subject><subject>FERMIONS</subject><subject>FUNCTIONS</subject><subject>GEV RANGE</subject><subject>HADRONS</subject><subject>INFORMATION</subject><subject>MATHEMATICAL MODELS</subject><subject>MATTER</subject><subject>MEAN-FIELD THEORY</subject><subject>NUCLEAR MATTER</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Particle and Nuclear Physics</subject><subject>PARTICLE MODELS</subject><subject>PARTICLE PROPERTIES</subject><subject>PHASE DIAGRAMS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QUARK MODEL</subject><subject>STRANGENESS</subject><issn>1063-7788</issn><issn>1562-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwAdgsMQf8J3bsEVWFIlVioAMT0dW5Jqlap9ju0G-Pq7AhMd27e-930h0h95w9ci7Lpw_OtKwqY5hlhvFSX5AJV1oU2orPy6yzXZz9a3IT45Yxzo1iE_I1_z5C6gdPhw2NCRKeRQdNyKOAcfDgHdIWIgXf0NQhPXQQkTY9tAH2I5bD7e5Ee58wgEu9b-keUm5uydUGdhHvfuuUrF7mq9miWL6_vs2el4UrhUqF1HrtuFDKlmAtQ2bW2oCpSsHAZg9FI6UDrZitGmEbaSSsDVrUTJrGySl5GNcOMfV1dH1C17nBe3SpFrxUSlQ6p_iYcmGIMeCmPoR-D-FUc1afv1j_-WJmxMjEnPUthno7HIPPt_wD_QCAcHPV</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Satarov, L. M.</creator><creator>Dmitriev, M. N.</creator><creator>Mishustin, I. N.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090801</creationdate><title>Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter</title><author>Satarov, L. M. ; Dmitriev, M. N. ; Mishustin, I. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-366bc125594a990e08b68a87420a966be2d33ca65097d29d383ab8e9e6038dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>APPROXIMATIONS</topic><topic>BAG MODEL</topic><topic>BARYONS</topic><topic>CALCULATION METHODS</topic><topic>COMPOSITE MODELS</topic><topic>CROSS SECTIONS</topic><topic>DIAGRAMS</topic><topic>DIFFERENTIAL CROSS SECTIONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>Elementary Particles and Fields</topic><topic>ENERGY RANGE</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF STATE</topic><topic>EXCITATION FUNCTIONS</topic><topic>EXTENDED PARTICLE MODEL</topic><topic>FERMIONS</topic><topic>FUNCTIONS</topic><topic>GEV RANGE</topic><topic>HADRONS</topic><topic>INFORMATION</topic><topic>MATHEMATICAL MODELS</topic><topic>MATTER</topic><topic>MEAN-FIELD THEORY</topic><topic>NUCLEAR MATTER</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Particle and Nuclear Physics</topic><topic>PARTICLE MODELS</topic><topic>PARTICLE PROPERTIES</topic><topic>PHASE DIAGRAMS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QUARK MODEL</topic><topic>STRANGENESS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satarov, L. M.</creatorcontrib><creatorcontrib>Dmitriev, M. N.</creatorcontrib><creatorcontrib>Mishustin, I. N.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of atomic nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satarov, L. M.</au><au>Dmitriev, M. N.</au><au>Mishustin, I. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter</atitle><jtitle>Physics of atomic nuclei</jtitle><stitle>Phys. Atom. Nuclei</stitle><date>2009-08-01</date><risdate>2009</risdate><volume>72</volume><issue>8</issue><spage>1390</spage><epage>1415</epage><pages>1390-1415</pages><issn>1063-7788</issn><eissn>1562-692X</eissn><abstract>The equation of state of hadron resonance gas at finite temperature and baryon density is calculated taking into account finite-size effects within the excluded-volume model. Contributions of known hadrons with masses up to 2 GeV are included in the zero-width approximation. Special attention is paid to the role of strange hadrons in the system with zero total strangeness. A density-dependent mean field is added to guarantee that the nuclear matter has a saturation point and a liquid-gas phase transition. The deconfined phase is described by the bag model with lowest order perturbative corrections. The phasetransition boundaries are found by using the Gibbs conditions with the strangeness neutrality constraint. The sensitivity of the phase diagram to the hadronic excluded volume and to the parametrization of the mean-field is investigated. The possibility of strangeness-antistrangeness separation in the mixed phase is analyzed. It is demonstrated that the peaks in the K/π and Λ/ π excitation functions observed at low SPS energies can be explained by a nonmonotonous behavior of the strangeness fugacity along the chemical freeze-out line.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S1063778809080146</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-7788
ispartof Physics of atomic nuclei, 2009-08, Vol.72 (8), p.1390-1415
issn 1063-7788
1562-692X
language eng
recordid cdi_osti_scitechconnect_21455276
source SpringerLink Journals - AutoHoldings
subjects APPROXIMATIONS
BAG MODEL
BARYONS
CALCULATION METHODS
COMPOSITE MODELS
CROSS SECTIONS
DIAGRAMS
DIFFERENTIAL CROSS SECTIONS
ELEMENTARY PARTICLES
Elementary Particles and Fields
ENERGY RANGE
EQUATIONS
EQUATIONS OF STATE
EXCITATION FUNCTIONS
EXTENDED PARTICLE MODEL
FERMIONS
FUNCTIONS
GEV RANGE
HADRONS
INFORMATION
MATHEMATICAL MODELS
MATTER
MEAN-FIELD THEORY
NUCLEAR MATTER
NUCLEAR PHYSICS AND RADIATION PHYSICS
Particle and Nuclear Physics
PARTICLE MODELS
PARTICLE PROPERTIES
PHASE DIAGRAMS
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
QUARK MODEL
STRANGENESS
title Equation of state of hadron resonance gas and the phase diagram of strongly interacting matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equation%20of%20state%20of%20hadron%20resonance%20gas%20and%20the%20phase%20diagram%20of%20strongly%20interacting%20matter&rft.jtitle=Physics%20of%20atomic%20nuclei&rft.au=Satarov,%20L.%20M.&rft.date=2009-08-01&rft.volume=72&rft.issue=8&rft.spage=1390&rft.epage=1415&rft.pages=1390-1415&rft.issn=1063-7788&rft.eissn=1562-692X&rft_id=info:doi/10.1134/S1063778809080146&rft_dat=%3Ccrossref_osti_%3E10_1134_S1063778809080146%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true