Pairing in 4-component fermion systems: The bulk limit of SU(4)-symmetric Hamiltonians

Fermion systems with more than two components can exhibit pairing condensates of a much more complex structure than the well-known single BCS condensate of spin-up and spin-down fermions. In the framework of the exactly solvable SO(8) Richardson–Gaudin (RG) model with SU(4)-symmetric Hamiltonians, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2010-07, Vol.325 (7), p.1340-1348
Hauptverfasser: Bertsch, G.F., Dukelsky, J., Errea, B., Esebbag, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1348
container_issue 7
container_start_page 1340
container_title Annals of physics
container_volume 325
creator Bertsch, G.F.
Dukelsky, J.
Errea, B.
Esebbag, C.
description Fermion systems with more than two components can exhibit pairing condensates of a much more complex structure than the well-known single BCS condensate of spin-up and spin-down fermions. In the framework of the exactly solvable SO(8) Richardson–Gaudin (RG) model with SU(4)-symmetric Hamiltonians, we show that the BCS approximation remains valid in the thermodynamic limit of large systems for describing the ground-state energy and the canonical and quasiparticle excitation gaps. Correlations beyond BCS pairing give rise to a spectrum of collective excitations, but these do not affect the bulk energy and quasiparticle gaps.
doi_str_mv 10.1016/j.aop.2010.02.015
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21452985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491610000473</els_id><sourcerecordid>914626877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-e964a259ac4b5244a5bd92248724b5ebbf9ce18907a5164d20aa64ad7b84ae373</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSNEJZaWH8DNggNwyHbs2IkNJ1QBRapUJFrEzXKcCfUS24vtRdp_j6PlxIHTaEbfG82b1zTPKWwp0P5ytzVxv2VQe2BboOJRs6Gg-hY68f1xswGAruWK9k-apznvACjlQm6ab1-MSy78IC4Q3tro9zFgKGTG5F0MJB9zQZ_fkrsHJONh-UkW510hcSZf71_zN20-eo8lOUuujXdLicGZkC-as9ksGZ_9refN_ccPd1fX7c3tp89X729a20leWlQ9N0woY_koGOdGjJNijMuB1QGO46wsUqlgMIL2fGJgTFVMwyi5wW7ozpuXp70xF6ezdQXtg40hoC2aVYtMSVGpVydqn-KvA-aivcsWl8UEjIesFeU96-Ww7nvxD7mLhxSqBS25AjoICRWiJ8immHPCWe-T8yYdNQW9pqF3uqah1zQ0MF3TqJp3Jw3Wb_x2mNZjMVicXFpvnaL7j_oPTg6QZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849017580</pqid></control><display><type>article</type><title>Pairing in 4-component fermion systems: The bulk limit of SU(4)-symmetric Hamiltonians</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bertsch, G.F. ; Dukelsky, J. ; Errea, B. ; Esebbag, C.</creator><creatorcontrib>Bertsch, G.F. ; Dukelsky, J. ; Errea, B. ; Esebbag, C.</creatorcontrib><description>Fermion systems with more than two components can exhibit pairing condensates of a much more complex structure than the well-known single BCS condensate of spin-up and spin-down fermions. In the framework of the exactly solvable SO(8) Richardson–Gaudin (RG) model with SU(4)-symmetric Hamiltonians, we show that the BCS approximation remains valid in the thermodynamic limit of large systems for describing the ground-state energy and the canonical and quasiparticle excitation gaps. Correlations beyond BCS pairing give rise to a spectrum of collective excitations, but these do not affect the bulk energy and quasiparticle gaps.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2010.02.015</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>ANGULAR MOMENTUM ; Approximation ; APPROXIMATIONS ; ATOMIC AND MOLECULAR PHYSICS ; Atoms &amp; subatomic particles ; BCS THEORY ; CALCULATION METHODS ; COLLECTIVE EXCITATIONS ; Condensates ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CORRELATIONS ; ENERGY GAP ; ENERGY LEVELS ; ENERGY-LEVEL TRANSITIONS ; EXACT SOLUTIONS ; EXCITATION ; FERMIONS ; Gaps ; GROUND STATES ; HAMILTONIANS ; INTERACTIONS ; LIE GROUPS ; Mathematical analysis ; Mathematical models ; MATHEMATICAL OPERATORS ; MATHEMATICAL SOLUTIONS ; PAIRING INTERACTIONS ; PARTICLE PROPERTIES ; QUANTUM OPERATORS ; Quantum physics ; QUASI PARTICLES ; SO GROUPS ; SO-8 GROUPS ; SPIN ; SU GROUPS ; SU-4 GROUPS ; SYMMETRY ; SYMMETRY GROUPS</subject><ispartof>Annals of physics, 2010-07, Vol.325 (7), p.1340-1348</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-e964a259ac4b5244a5bd92248724b5ebbf9ce18907a5164d20aa64ad7b84ae373</citedby><cites>FETCH-LOGICAL-c384t-e964a259ac4b5244a5bd92248724b5ebbf9ce18907a5164d20aa64ad7b84ae373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aop.2010.02.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21452985$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bertsch, G.F.</creatorcontrib><creatorcontrib>Dukelsky, J.</creatorcontrib><creatorcontrib>Errea, B.</creatorcontrib><creatorcontrib>Esebbag, C.</creatorcontrib><title>Pairing in 4-component fermion systems: The bulk limit of SU(4)-symmetric Hamiltonians</title><title>Annals of physics</title><description>Fermion systems with more than two components can exhibit pairing condensates of a much more complex structure than the well-known single BCS condensate of spin-up and spin-down fermions. In the framework of the exactly solvable SO(8) Richardson–Gaudin (RG) model with SU(4)-symmetric Hamiltonians, we show that the BCS approximation remains valid in the thermodynamic limit of large systems for describing the ground-state energy and the canonical and quasiparticle excitation gaps. Correlations beyond BCS pairing give rise to a spectrum of collective excitations, but these do not affect the bulk energy and quasiparticle gaps.</description><subject>ANGULAR MOMENTUM</subject><subject>Approximation</subject><subject>APPROXIMATIONS</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Atoms &amp; subatomic particles</subject><subject>BCS THEORY</subject><subject>CALCULATION METHODS</subject><subject>COLLECTIVE EXCITATIONS</subject><subject>Condensates</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CORRELATIONS</subject><subject>ENERGY GAP</subject><subject>ENERGY LEVELS</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>EXACT SOLUTIONS</subject><subject>EXCITATION</subject><subject>FERMIONS</subject><subject>Gaps</subject><subject>GROUND STATES</subject><subject>HAMILTONIANS</subject><subject>INTERACTIONS</subject><subject>LIE GROUPS</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>PAIRING INTERACTIONS</subject><subject>PARTICLE PROPERTIES</subject><subject>QUANTUM OPERATORS</subject><subject>Quantum physics</subject><subject>QUASI PARTICLES</subject><subject>SO GROUPS</subject><subject>SO-8 GROUPS</subject><subject>SPIN</subject><subject>SU GROUPS</subject><subject>SU-4 GROUPS</subject><subject>SYMMETRY</subject><subject>SYMMETRY GROUPS</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhSNEJZaWH8DNggNwyHbs2IkNJ1QBRapUJFrEzXKcCfUS24vtRdp_j6PlxIHTaEbfG82b1zTPKWwp0P5ytzVxv2VQe2BboOJRs6Gg-hY68f1xswGAruWK9k-apznvACjlQm6ab1-MSy78IC4Q3tro9zFgKGTG5F0MJB9zQZ_fkrsHJONh-UkW510hcSZf71_zN20-eo8lOUuujXdLicGZkC-as9ksGZ_9refN_ccPd1fX7c3tp89X729a20leWlQ9N0woY_koGOdGjJNijMuB1QGO46wsUqlgMIL2fGJgTFVMwyi5wW7ozpuXp70xF6ezdQXtg40hoC2aVYtMSVGpVydqn-KvA-aivcsWl8UEjIesFeU96-Ww7nvxD7mLhxSqBS25AjoICRWiJ8immHPCWe-T8yYdNQW9pqF3uqah1zQ0MF3TqJp3Jw3Wb_x2mNZjMVicXFpvnaL7j_oPTg6QZg</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Bertsch, G.F.</creator><creator>Dukelsky, J.</creator><creator>Errea, B.</creator><creator>Esebbag, C.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20100701</creationdate><title>Pairing in 4-component fermion systems: The bulk limit of SU(4)-symmetric Hamiltonians</title><author>Bertsch, G.F. ; Dukelsky, J. ; Errea, B. ; Esebbag, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-e964a259ac4b5244a5bd92248724b5ebbf9ce18907a5164d20aa64ad7b84ae373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ANGULAR MOMENTUM</topic><topic>Approximation</topic><topic>APPROXIMATIONS</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Atoms &amp; subatomic particles</topic><topic>BCS THEORY</topic><topic>CALCULATION METHODS</topic><topic>COLLECTIVE EXCITATIONS</topic><topic>Condensates</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CORRELATIONS</topic><topic>ENERGY GAP</topic><topic>ENERGY LEVELS</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>EXACT SOLUTIONS</topic><topic>EXCITATION</topic><topic>FERMIONS</topic><topic>Gaps</topic><topic>GROUND STATES</topic><topic>HAMILTONIANS</topic><topic>INTERACTIONS</topic><topic>LIE GROUPS</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>PAIRING INTERACTIONS</topic><topic>PARTICLE PROPERTIES</topic><topic>QUANTUM OPERATORS</topic><topic>Quantum physics</topic><topic>QUASI PARTICLES</topic><topic>SO GROUPS</topic><topic>SO-8 GROUPS</topic><topic>SPIN</topic><topic>SU GROUPS</topic><topic>SU-4 GROUPS</topic><topic>SYMMETRY</topic><topic>SYMMETRY GROUPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertsch, G.F.</creatorcontrib><creatorcontrib>Dukelsky, J.</creatorcontrib><creatorcontrib>Errea, B.</creatorcontrib><creatorcontrib>Esebbag, C.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertsch, G.F.</au><au>Dukelsky, J.</au><au>Errea, B.</au><au>Esebbag, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pairing in 4-component fermion systems: The bulk limit of SU(4)-symmetric Hamiltonians</atitle><jtitle>Annals of physics</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>325</volume><issue>7</issue><spage>1340</spage><epage>1348</epage><pages>1340-1348</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>Fermion systems with more than two components can exhibit pairing condensates of a much more complex structure than the well-known single BCS condensate of spin-up and spin-down fermions. In the framework of the exactly solvable SO(8) Richardson–Gaudin (RG) model with SU(4)-symmetric Hamiltonians, we show that the BCS approximation remains valid in the thermodynamic limit of large systems for describing the ground-state energy and the canonical and quasiparticle excitation gaps. Correlations beyond BCS pairing give rise to a spectrum of collective excitations, but these do not affect the bulk energy and quasiparticle gaps.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2010.02.015</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2010-07, Vol.325 (7), p.1340-1348
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_21452985
source ScienceDirect Journals (5 years ago - present)
subjects ANGULAR MOMENTUM
Approximation
APPROXIMATIONS
ATOMIC AND MOLECULAR PHYSICS
Atoms & subatomic particles
BCS THEORY
CALCULATION METHODS
COLLECTIVE EXCITATIONS
Condensates
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CORRELATIONS
ENERGY GAP
ENERGY LEVELS
ENERGY-LEVEL TRANSITIONS
EXACT SOLUTIONS
EXCITATION
FERMIONS
Gaps
GROUND STATES
HAMILTONIANS
INTERACTIONS
LIE GROUPS
Mathematical analysis
Mathematical models
MATHEMATICAL OPERATORS
MATHEMATICAL SOLUTIONS
PAIRING INTERACTIONS
PARTICLE PROPERTIES
QUANTUM OPERATORS
Quantum physics
QUASI PARTICLES
SO GROUPS
SO-8 GROUPS
SPIN
SU GROUPS
SU-4 GROUPS
SYMMETRY
SYMMETRY GROUPS
title Pairing in 4-component fermion systems: The bulk limit of SU(4)-symmetric Hamiltonians
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pairing%20in%204-component%20fermion%20systems:%20The%20bulk%20limit%20of%20SU(4)-symmetric%20Hamiltonians&rft.jtitle=Annals%20of%20physics&rft.au=Bertsch,%20G.F.&rft.date=2010-07-01&rft.volume=325&rft.issue=7&rft.spage=1340&rft.epage=1348&rft.pages=1340-1348&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2010.02.015&rft_dat=%3Cproquest_osti_%3E914626877%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849017580&rft_id=info:pmid/&rft_els_id=S0003491610000473&rfr_iscdi=true