Phase stability in a multistage Zeeman decelerator

The phase stability of a multistage Zeeman decelerator is analyzed by numerical particle-trajectory simulations and experimental measurements. A one-dimensional model of the phase stability in multistage Stark deceleration [Bethlem et al., Phys. Rev. Lett. 84, 5744 (2000)] has been adapted to multis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2010-10, Vol.82 (4), Article 043428
Hauptverfasser: Wiederkehr, A. W., Hogan, S. D., Merkt, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 82
creator Wiederkehr, A. W.
Hogan, S. D.
Merkt, F.
description The phase stability of a multistage Zeeman decelerator is analyzed by numerical particle-trajectory simulations and experimental measurements. A one-dimensional model of the phase stability in multistage Stark deceleration [Bethlem et al., Phys. Rev. Lett. 84, 5744 (2000)] has been adapted to multistage Zeeman deceleration and compared with one- and three-dimensional particle-trajectory simulations, including the analysis of the effect of finite switch-on and -off times of the deceleration pulses. The comparison reveals that transverse effects in the decelerator lead to a considerable reduction of the phase-space acceptance at low values of the phase angle and an enhancement at high values. The optimal combinations of phase angles and currents with which a preset amount of kinetic energy can be removed from atoms and molecules in a pulsed supersonic beam using a multistage decelerator are determined by simulation. Quantitative analysis of the phase-space acceptance within a given volume reveals that for our decelerator (8 {mu}s switch-off time) optimal conditions are achieved for values of the phase angle between 45 deg. and 55 deg. This conclusion is examined and confirmed by experimental measurements using deuterium atoms. Alternative approaches to generate optimal deceleration pulse sequences, such as the implementation of evolutionary algorithms or the use of higher-order modes of the decelerator, are discussed.
doi_str_mv 10.1103/PhysRevA.82.043428
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21450817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_82_043428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9f2eab18daaa76c141911ce293cd13b092c4314dec87829bd2e54d101361f0703</originalsourceid><addsrcrecordid>eNo1kE1LxDAYhIMouK7-AU8Fz13zvknb5LgsfsGCi-jFS0jTtzbSD2mi0H9vl-pcZhiGOTyMXQPfAHBxe2im8EI_243CDZdCojphK-BappAjnh5zxlPUsjhnFyF88llS6RXDQ2MDJSHa0rc-TonvE5t03230c_dByTtRZ_ukIkctjTYO4yU7q20b6OrP1-zt_u5195junx-edtt96kSuYqprJFuCqqy1Re5AggZwhFq4CkTJNTopQM7HqlCoywopkxVwEDnUvOBizW6W3yFEb4LzkVzjhr4nFw2CzLiCYl7hsnLjEMJItfkafWfHyQA3Rzbmn41RaBY24hdrW1gE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase stability in a multistage Zeeman decelerator</title><source>American Physical Society Journals</source><creator>Wiederkehr, A. W. ; Hogan, S. D. ; Merkt, F.</creator><creatorcontrib>Wiederkehr, A. W. ; Hogan, S. D. ; Merkt, F.</creatorcontrib><description>The phase stability of a multistage Zeeman decelerator is analyzed by numerical particle-trajectory simulations and experimental measurements. A one-dimensional model of the phase stability in multistage Stark deceleration [Bethlem et al., Phys. Rev. Lett. 84, 5744 (2000)] has been adapted to multistage Zeeman deceleration and compared with one- and three-dimensional particle-trajectory simulations, including the analysis of the effect of finite switch-on and -off times of the deceleration pulses. The comparison reveals that transverse effects in the decelerator lead to a considerable reduction of the phase-space acceptance at low values of the phase angle and an enhancement at high values. The optimal combinations of phase angles and currents with which a preset amount of kinetic energy can be removed from atoms and molecules in a pulsed supersonic beam using a multistage decelerator are determined by simulation. Quantitative analysis of the phase-space acceptance within a given volume reveals that for our decelerator (8 {mu}s switch-off time) optimal conditions are achieved for values of the phase angle between 45 deg. and 55 deg. This conclusion is examined and confirmed by experimental measurements using deuterium atoms. Alternative approaches to generate optimal deceleration pulse sequences, such as the implementation of evolutionary algorithms or the use of higher-order modes of the decelerator, are discussed.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.82.043428</identifier><language>eng</language><publisher>United States</publisher><subject>ACCELERATION ; ALGORITHMS ; ATOMIC AND MOLECULAR PHYSICS ; ATOMS ; COMPARATIVE EVALUATIONS ; COMPUTERIZED SIMULATION ; DEUTERIUM ; ENERGY ; EVALUATION ; HYDROGEN ISOTOPES ; ISOTOPES ; KINETIC ENERGY ; LIGHT NUCLEI ; MATHEMATICAL LOGIC ; MATHEMATICAL SPACE ; MOLECULES ; NUCLEI ; ODD-ODD NUCLEI ; PHASE SPACE ; PHASE STABILITY ; PULSES ; SIMULATION ; SPACE ; STABILITY ; STABLE ISOTOPES ; ZEEMAN EFFECT</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2010-10, Vol.82 (4), Article 043428</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9f2eab18daaa76c141911ce293cd13b092c4314dec87829bd2e54d101361f0703</citedby><cites>FETCH-LOGICAL-c368t-9f2eab18daaa76c141911ce293cd13b092c4314dec87829bd2e54d101361f0703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21450817$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiederkehr, A. W.</creatorcontrib><creatorcontrib>Hogan, S. D.</creatorcontrib><creatorcontrib>Merkt, F.</creatorcontrib><title>Phase stability in a multistage Zeeman decelerator</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>The phase stability of a multistage Zeeman decelerator is analyzed by numerical particle-trajectory simulations and experimental measurements. A one-dimensional model of the phase stability in multistage Stark deceleration [Bethlem et al., Phys. Rev. Lett. 84, 5744 (2000)] has been adapted to multistage Zeeman deceleration and compared with one- and three-dimensional particle-trajectory simulations, including the analysis of the effect of finite switch-on and -off times of the deceleration pulses. The comparison reveals that transverse effects in the decelerator lead to a considerable reduction of the phase-space acceptance at low values of the phase angle and an enhancement at high values. The optimal combinations of phase angles and currents with which a preset amount of kinetic energy can be removed from atoms and molecules in a pulsed supersonic beam using a multistage decelerator are determined by simulation. Quantitative analysis of the phase-space acceptance within a given volume reveals that for our decelerator (8 {mu}s switch-off time) optimal conditions are achieved for values of the phase angle between 45 deg. and 55 deg. This conclusion is examined and confirmed by experimental measurements using deuterium atoms. Alternative approaches to generate optimal deceleration pulse sequences, such as the implementation of evolutionary algorithms or the use of higher-order modes of the decelerator, are discussed.</description><subject>ACCELERATION</subject><subject>ALGORITHMS</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>ATOMS</subject><subject>COMPARATIVE EVALUATIONS</subject><subject>COMPUTERIZED SIMULATION</subject><subject>DEUTERIUM</subject><subject>ENERGY</subject><subject>EVALUATION</subject><subject>HYDROGEN ISOTOPES</subject><subject>ISOTOPES</subject><subject>KINETIC ENERGY</subject><subject>LIGHT NUCLEI</subject><subject>MATHEMATICAL LOGIC</subject><subject>MATHEMATICAL SPACE</subject><subject>MOLECULES</subject><subject>NUCLEI</subject><subject>ODD-ODD NUCLEI</subject><subject>PHASE SPACE</subject><subject>PHASE STABILITY</subject><subject>PULSES</subject><subject>SIMULATION</subject><subject>SPACE</subject><subject>STABILITY</subject><subject>STABLE ISOTOPES</subject><subject>ZEEMAN EFFECT</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LxDAYhIMouK7-AU8Fz13zvknb5LgsfsGCi-jFS0jTtzbSD2mi0H9vl-pcZhiGOTyMXQPfAHBxe2im8EI_243CDZdCojphK-BappAjnh5zxlPUsjhnFyF88llS6RXDQ2MDJSHa0rc-TonvE5t03230c_dByTtRZ_ukIkctjTYO4yU7q20b6OrP1-zt_u5195junx-edtt96kSuYqprJFuCqqy1Re5AggZwhFq4CkTJNTopQM7HqlCoywopkxVwEDnUvOBizW6W3yFEb4LzkVzjhr4nFw2CzLiCYl7hsnLjEMJItfkafWfHyQA3Rzbmn41RaBY24hdrW1gE</recordid><startdate>20101025</startdate><enddate>20101025</enddate><creator>Wiederkehr, A. W.</creator><creator>Hogan, S. D.</creator><creator>Merkt, F.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20101025</creationdate><title>Phase stability in a multistage Zeeman decelerator</title><author>Wiederkehr, A. W. ; Hogan, S. D. ; Merkt, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9f2eab18daaa76c141911ce293cd13b092c4314dec87829bd2e54d101361f0703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ACCELERATION</topic><topic>ALGORITHMS</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>ATOMS</topic><topic>COMPARATIVE EVALUATIONS</topic><topic>COMPUTERIZED SIMULATION</topic><topic>DEUTERIUM</topic><topic>ENERGY</topic><topic>EVALUATION</topic><topic>HYDROGEN ISOTOPES</topic><topic>ISOTOPES</topic><topic>KINETIC ENERGY</topic><topic>LIGHT NUCLEI</topic><topic>MATHEMATICAL LOGIC</topic><topic>MATHEMATICAL SPACE</topic><topic>MOLECULES</topic><topic>NUCLEI</topic><topic>ODD-ODD NUCLEI</topic><topic>PHASE SPACE</topic><topic>PHASE STABILITY</topic><topic>PULSES</topic><topic>SIMULATION</topic><topic>SPACE</topic><topic>STABILITY</topic><topic>STABLE ISOTOPES</topic><topic>ZEEMAN EFFECT</topic><toplevel>online_resources</toplevel><creatorcontrib>Wiederkehr, A. W.</creatorcontrib><creatorcontrib>Hogan, S. D.</creatorcontrib><creatorcontrib>Merkt, F.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiederkehr, A. W.</au><au>Hogan, S. D.</au><au>Merkt, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase stability in a multistage Zeeman decelerator</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2010-10-25</date><risdate>2010</risdate><volume>82</volume><issue>4</issue><artnum>043428</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>The phase stability of a multistage Zeeman decelerator is analyzed by numerical particle-trajectory simulations and experimental measurements. A one-dimensional model of the phase stability in multistage Stark deceleration [Bethlem et al., Phys. Rev. Lett. 84, 5744 (2000)] has been adapted to multistage Zeeman deceleration and compared with one- and three-dimensional particle-trajectory simulations, including the analysis of the effect of finite switch-on and -off times of the deceleration pulses. The comparison reveals that transverse effects in the decelerator lead to a considerable reduction of the phase-space acceptance at low values of the phase angle and an enhancement at high values. The optimal combinations of phase angles and currents with which a preset amount of kinetic energy can be removed from atoms and molecules in a pulsed supersonic beam using a multistage decelerator are determined by simulation. Quantitative analysis of the phase-space acceptance within a given volume reveals that for our decelerator (8 {mu}s switch-off time) optimal conditions are achieved for values of the phase angle between 45 deg. and 55 deg. This conclusion is examined and confirmed by experimental measurements using deuterium atoms. Alternative approaches to generate optimal deceleration pulse sequences, such as the implementation of evolutionary algorithms or the use of higher-order modes of the decelerator, are discussed.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.82.043428</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 2010-10, Vol.82 (4), Article 043428
issn 1050-2947
1094-1622
language eng
recordid cdi_osti_scitechconnect_21450817
source American Physical Society Journals
subjects ACCELERATION
ALGORITHMS
ATOMIC AND MOLECULAR PHYSICS
ATOMS
COMPARATIVE EVALUATIONS
COMPUTERIZED SIMULATION
DEUTERIUM
ENERGY
EVALUATION
HYDROGEN ISOTOPES
ISOTOPES
KINETIC ENERGY
LIGHT NUCLEI
MATHEMATICAL LOGIC
MATHEMATICAL SPACE
MOLECULES
NUCLEI
ODD-ODD NUCLEI
PHASE SPACE
PHASE STABILITY
PULSES
SIMULATION
SPACE
STABILITY
STABLE ISOTOPES
ZEEMAN EFFECT
title Phase stability in a multistage Zeeman decelerator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20stability%20in%20a%20multistage%20Zeeman%20decelerator&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Wiederkehr,%20A.%20W.&rft.date=2010-10-25&rft.volume=82&rft.issue=4&rft.artnum=043428&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.82.043428&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_82_043428%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true