Ultrafast ionization and fragmentation of molecular silane
The ionization and fragmentation of molecular silane is examined here with laser intensities ranging between 7x10{sup 12} and 1x10{sup 15} W/cm{sup 2} at 624 nm. The ionization potential of silane determined using both multiphoton ionization (MPI) and tunneling ionization (TI) models agrees with the...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2010-09, Vol.82 (3), Article 033424 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physical review. A, Atomic, molecular, and optical physics |
container_volume | 82 |
creator | Sayres, Scott G. Ross, Matt W. Castleman, A. W. |
description | The ionization and fragmentation of molecular silane is examined here with laser intensities ranging between 7x10{sup 12} and 1x10{sup 15} W/cm{sup 2} at 624 nm. The ionization potential of silane determined using both multiphoton ionization (MPI) and tunneling ionization (TI) models agrees with the vertical ionization potential of the molecule. In addition, the application of the tunneling ionization model is extended here to the fragments of silane to determine their appearance potentials. MPI values for SiH{sub 3}{sup +}, SiH{sub 2}{sup +}, SiH{sup +}, Si{sup +}, as well as H{sub 2}{sup +} and H{sup +} are consistent with vertical potentials, whereas the TI measurements are found to be in accord with adiabatic potentials. The tunneling appearance potentials observed for the fragments H{sub 2}{sup +} and H{sup +} are lower than reported for other techniques. In fact, the appearance potential measurements for these species resulting from silane are lower than their ionization potentials. The fragmentation rate of silane is determined to be nearly 20 times larger than the ionization rate. The main precursor for producing amorphous silicon (a-Si:H) thin films, SiH{sub 3}{sup +} is the dominant fragmentation product making up roughly a third of the total ion yield, a substantial increase from other techniques. |
doi_str_mv | 10.1103/PhysRevA.82.033424 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21450591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_82_033424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-a8bd5f4bfa83cb698cd2c91b22a09a2c535ecdbfed1808c59e490a13af84df493</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhIMoWKt_wNOC513zWRNvpfgFBUXsObz7bmIju1lJolB_vS2rc5lhGObwEHLJaMMYFdcv211-dd_LRvOGCiG5PCIzRo2s2YLz40NWtOZG3pySs5w_6F5Smxm53fQlgYdcqjDG8ANlbxXErvIJ3gcXy9SMvhrG3uFXD6nKoYfozsmJhz67iz-fk8393dvqsV4_PzytlusahWSlBt12ysvWgxbYLozGjqNhLedADXBUQjnsWu86pqlGZZw0FJgAr2XnpRFzcjX9jrkEmzEUh1scY3RYLGdSUWXYfsWnFaYx5-S8_UxhgLSzjNoDI_vPyGpuJ0biF-q9XPE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast ionization and fragmentation of molecular silane</title><source>American Physical Society Journals</source><creator>Sayres, Scott G. ; Ross, Matt W. ; Castleman, A. W.</creator><creatorcontrib>Sayres, Scott G. ; Ross, Matt W. ; Castleman, A. W.</creatorcontrib><description>The ionization and fragmentation of molecular silane is examined here with laser intensities ranging between 7x10{sup 12} and 1x10{sup 15} W/cm{sup 2} at 624 nm. The ionization potential of silane determined using both multiphoton ionization (MPI) and tunneling ionization (TI) models agrees with the vertical ionization potential of the molecule. In addition, the application of the tunneling ionization model is extended here to the fragments of silane to determine their appearance potentials. MPI values for SiH{sub 3}{sup +}, SiH{sub 2}{sup +}, SiH{sup +}, Si{sup +}, as well as H{sub 2}{sup +} and H{sup +} are consistent with vertical potentials, whereas the TI measurements are found to be in accord with adiabatic potentials. The tunneling appearance potentials observed for the fragments H{sub 2}{sup +} and H{sup +} are lower than reported for other techniques. In fact, the appearance potential measurements for these species resulting from silane are lower than their ionization potentials. The fragmentation rate of silane is determined to be nearly 20 times larger than the ionization rate. The main precursor for producing amorphous silicon (a-Si:H) thin films, SiH{sub 3}{sup +} is the dominant fragmentation product making up roughly a third of the total ion yield, a substantial increase from other techniques.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.82.033424</identifier><language>eng</language><publisher>United States</publisher><subject>ATOMIC AND MOLECULAR PHYSICS ; CATIONS ; CHARGED PARTICLES ; COLLISIONS ; DISSOCIATION ; ELECTROMAGNETIC RADIATION ; ELEMENTS ; HYDRIDES ; HYDROGEN COMPOUNDS ; HYDROGEN IONS ; HYDROGEN IONS 1 PLUS ; HYDROGEN IONS 2 PLUS ; IONIZATION ; IONIZATION POTENTIAL ; IONS ; LASER RADIATION ; MOLECULAR IONS ; MOLECULE COLLISIONS ; MOLECULES ; ORGANIC COMPOUNDS ; ORGANIC SILICON COMPOUNDS ; PHOTOIONIZATION ; PHOTON COLLISIONS ; PHOTON-MOLECULE COLLISIONS ; RADIATIONS ; SEMIMETALS ; SILANES ; SILICON ; SILICON COMPOUNDS ; SILICON IONS ; THIN FILMS ; TUNNEL EFFECT</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2010-09, Vol.82 (3), Article 033424</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-a8bd5f4bfa83cb698cd2c91b22a09a2c535ecdbfed1808c59e490a13af84df493</citedby><cites>FETCH-LOGICAL-c341t-a8bd5f4bfa83cb698cd2c91b22a09a2c535ecdbfed1808c59e490a13af84df493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21450591$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sayres, Scott G.</creatorcontrib><creatorcontrib>Ross, Matt W.</creatorcontrib><creatorcontrib>Castleman, A. W.</creatorcontrib><title>Ultrafast ionization and fragmentation of molecular silane</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>The ionization and fragmentation of molecular silane is examined here with laser intensities ranging between 7x10{sup 12} and 1x10{sup 15} W/cm{sup 2} at 624 nm. The ionization potential of silane determined using both multiphoton ionization (MPI) and tunneling ionization (TI) models agrees with the vertical ionization potential of the molecule. In addition, the application of the tunneling ionization model is extended here to the fragments of silane to determine their appearance potentials. MPI values for SiH{sub 3}{sup +}, SiH{sub 2}{sup +}, SiH{sup +}, Si{sup +}, as well as H{sub 2}{sup +} and H{sup +} are consistent with vertical potentials, whereas the TI measurements are found to be in accord with adiabatic potentials. The tunneling appearance potentials observed for the fragments H{sub 2}{sup +} and H{sup +} are lower than reported for other techniques. In fact, the appearance potential measurements for these species resulting from silane are lower than their ionization potentials. The fragmentation rate of silane is determined to be nearly 20 times larger than the ionization rate. The main precursor for producing amorphous silicon (a-Si:H) thin films, SiH{sub 3}{sup +} is the dominant fragmentation product making up roughly a third of the total ion yield, a substantial increase from other techniques.</description><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>CATIONS</subject><subject>CHARGED PARTICLES</subject><subject>COLLISIONS</subject><subject>DISSOCIATION</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELEMENTS</subject><subject>HYDRIDES</subject><subject>HYDROGEN COMPOUNDS</subject><subject>HYDROGEN IONS</subject><subject>HYDROGEN IONS 1 PLUS</subject><subject>HYDROGEN IONS 2 PLUS</subject><subject>IONIZATION</subject><subject>IONIZATION POTENTIAL</subject><subject>IONS</subject><subject>LASER RADIATION</subject><subject>MOLECULAR IONS</subject><subject>MOLECULE COLLISIONS</subject><subject>MOLECULES</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC SILICON COMPOUNDS</subject><subject>PHOTOIONIZATION</subject><subject>PHOTON COLLISIONS</subject><subject>PHOTON-MOLECULE COLLISIONS</subject><subject>RADIATIONS</subject><subject>SEMIMETALS</subject><subject>SILANES</subject><subject>SILICON</subject><subject>SILICON COMPOUNDS</subject><subject>SILICON IONS</subject><subject>THIN FILMS</subject><subject>TUNNEL EFFECT</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEYhIMoWKt_wNOC513zWRNvpfgFBUXsObz7bmIju1lJolB_vS2rc5lhGObwEHLJaMMYFdcv211-dd_LRvOGCiG5PCIzRo2s2YLz40NWtOZG3pySs5w_6F5Smxm53fQlgYdcqjDG8ANlbxXErvIJ3gcXy9SMvhrG3uFXD6nKoYfozsmJhz67iz-fk8393dvqsV4_PzytlusahWSlBt12ysvWgxbYLozGjqNhLedADXBUQjnsWu86pqlGZZw0FJgAr2XnpRFzcjX9jrkEmzEUh1scY3RYLGdSUWXYfsWnFaYx5-S8_UxhgLSzjNoDI_vPyGpuJ0biF-q9XPE</recordid><startdate>20100923</startdate><enddate>20100923</enddate><creator>Sayres, Scott G.</creator><creator>Ross, Matt W.</creator><creator>Castleman, A. W.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20100923</creationdate><title>Ultrafast ionization and fragmentation of molecular silane</title><author>Sayres, Scott G. ; Ross, Matt W. ; Castleman, A. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-a8bd5f4bfa83cb698cd2c91b22a09a2c535ecdbfed1808c59e490a13af84df493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>CATIONS</topic><topic>CHARGED PARTICLES</topic><topic>COLLISIONS</topic><topic>DISSOCIATION</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELEMENTS</topic><topic>HYDRIDES</topic><topic>HYDROGEN COMPOUNDS</topic><topic>HYDROGEN IONS</topic><topic>HYDROGEN IONS 1 PLUS</topic><topic>HYDROGEN IONS 2 PLUS</topic><topic>IONIZATION</topic><topic>IONIZATION POTENTIAL</topic><topic>IONS</topic><topic>LASER RADIATION</topic><topic>MOLECULAR IONS</topic><topic>MOLECULE COLLISIONS</topic><topic>MOLECULES</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC SILICON COMPOUNDS</topic><topic>PHOTOIONIZATION</topic><topic>PHOTON COLLISIONS</topic><topic>PHOTON-MOLECULE COLLISIONS</topic><topic>RADIATIONS</topic><topic>SEMIMETALS</topic><topic>SILANES</topic><topic>SILICON</topic><topic>SILICON COMPOUNDS</topic><topic>SILICON IONS</topic><topic>THIN FILMS</topic><topic>TUNNEL EFFECT</topic><toplevel>online_resources</toplevel><creatorcontrib>Sayres, Scott G.</creatorcontrib><creatorcontrib>Ross, Matt W.</creatorcontrib><creatorcontrib>Castleman, A. W.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayres, Scott G.</au><au>Ross, Matt W.</au><au>Castleman, A. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast ionization and fragmentation of molecular silane</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2010-09-23</date><risdate>2010</risdate><volume>82</volume><issue>3</issue><artnum>033424</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>The ionization and fragmentation of molecular silane is examined here with laser intensities ranging between 7x10{sup 12} and 1x10{sup 15} W/cm{sup 2} at 624 nm. The ionization potential of silane determined using both multiphoton ionization (MPI) and tunneling ionization (TI) models agrees with the vertical ionization potential of the molecule. In addition, the application of the tunneling ionization model is extended here to the fragments of silane to determine their appearance potentials. MPI values for SiH{sub 3}{sup +}, SiH{sub 2}{sup +}, SiH{sup +}, Si{sup +}, as well as H{sub 2}{sup +} and H{sup +} are consistent with vertical potentials, whereas the TI measurements are found to be in accord with adiabatic potentials. The tunneling appearance potentials observed for the fragments H{sub 2}{sup +} and H{sup +} are lower than reported for other techniques. In fact, the appearance potential measurements for these species resulting from silane are lower than their ionization potentials. The fragmentation rate of silane is determined to be nearly 20 times larger than the ionization rate. The main precursor for producing amorphous silicon (a-Si:H) thin films, SiH{sub 3}{sup +} is the dominant fragmentation product making up roughly a third of the total ion yield, a substantial increase from other techniques.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.82.033424</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-2947 |
ispartof | Physical review. A, Atomic, molecular, and optical physics, 2010-09, Vol.82 (3), Article 033424 |
issn | 1050-2947 1094-1622 |
language | eng |
recordid | cdi_osti_scitechconnect_21450591 |
source | American Physical Society Journals |
subjects | ATOMIC AND MOLECULAR PHYSICS CATIONS CHARGED PARTICLES COLLISIONS DISSOCIATION ELECTROMAGNETIC RADIATION ELEMENTS HYDRIDES HYDROGEN COMPOUNDS HYDROGEN IONS HYDROGEN IONS 1 PLUS HYDROGEN IONS 2 PLUS IONIZATION IONIZATION POTENTIAL IONS LASER RADIATION MOLECULAR IONS MOLECULE COLLISIONS MOLECULES ORGANIC COMPOUNDS ORGANIC SILICON COMPOUNDS PHOTOIONIZATION PHOTON COLLISIONS PHOTON-MOLECULE COLLISIONS RADIATIONS SEMIMETALS SILANES SILICON SILICON COMPOUNDS SILICON IONS THIN FILMS TUNNEL EFFECT |
title | Ultrafast ionization and fragmentation of molecular silane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20ionization%20and%20fragmentation%20of%20molecular%20silane&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Sayres,%20Scott%20G.&rft.date=2010-09-23&rft.volume=82&rft.issue=3&rft.artnum=033424&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.82.033424&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_82_033424%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |