Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium

Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumption...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum electronics (Woodbury, N.Y.) N.Y.), 2000-04, Vol.30 (4), p.287-304
1. Verfasser: Maimistov, Andrei I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 4
container_start_page 287
container_title Quantum electronics (Woodbury, N.Y.)
container_volume 30
creator Maimistov, Andrei I
description Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper)
doi_str_mv 10.1070/QE2000v030n04ABEH001712
format Article
fullrecord <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21442698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1070_QE2000v030n04ABEH001712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-304bb81fe35be2dbcc70a2e47a0ea98648fa0679172f6e1882a0f40a595c30c73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsH78BgOePKxOPppkj7XUDyiIqBcvIU1n28husiRb0X_vlnrwoJ4yYZ5nZniL4ozCJQUFV48zBgDvwCGAmFzP7gCoomyvGFEhdSlUVe0PNUheKk31YXGU89tgKCr5qHh9ii2SNi6xySTWpEuxsyvb-xi2X_zoE7bYfJK8jqkn2KDrU2ztKmDvHek2TcZMfCCWhBgaH9Am0uLSb9qT4qC2Q_v0-z0uXm5mz9O7cv5wez-dzEvHJfQlB7FYaFojHy-QLRfOKbAMhbKAttJS6NqCVBVVrJZItWYWagF2XI0dB6f4cXG-mxtz7012vke3djGE4VTDqBBMVnqg1I5yKeacsDZd8q1Nn4aC2QZp_ghyMC92po_dD0lys83TcDDCTICbblkPLPuN_X_BF1QUg7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Maimistov, Andrei I</creator><creatorcontrib>Maimistov, Andrei I</creatorcontrib><description>Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper)</description><identifier>ISSN: 1063-7818</identifier><identifier>EISSN: 1468-4799</identifier><identifier>DOI: 10.1070/QE2000v030n04ABEH001712</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>ANALYTICAL SOLUTION ; ANHARMONIC OSCILLATORS ; CARRIERS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFERENTIAL EQUATIONS ; ELECTRIC FIELDS ; ELECTROMAGNETIC FIELDS ; ELECTROMAGNETIC PULSES ; ELECTROMAGNETIC RADIATION ; EQUATIONS ; MATHEMATICAL SOLUTIONS ; NONLINEAR PROBLEMS ; OSCILLATIONS ; PARTIAL DIFFERENTIAL EQUATIONS ; PULSES ; RADIATIONS ; RESONANCE ; TIME DEPENDENCE ; WAVE EQUATIONS</subject><ispartof>Quantum electronics (Woodbury, N.Y.), 2000-04, Vol.30 (4), p.287-304</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-304bb81fe35be2dbcc70a2e47a0ea98648fa0679172f6e1882a0f40a595c30c73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/QE2000v030n04ABEH001712/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,53891</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21442698$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maimistov, Andrei I</creatorcontrib><title>Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium</title><title>Quantum electronics (Woodbury, N.Y.)</title><description>Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper)</description><subject>ANALYTICAL SOLUTION</subject><subject>ANHARMONIC OSCILLATORS</subject><subject>CARRIERS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELECTRIC FIELDS</subject><subject>ELECTROMAGNETIC FIELDS</subject><subject>ELECTROMAGNETIC PULSES</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>EQUATIONS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>NONLINEAR PROBLEMS</subject><subject>OSCILLATIONS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PULSES</subject><subject>RADIATIONS</subject><subject>RESONANCE</subject><subject>TIME DEPENDENCE</subject><subject>WAVE EQUATIONS</subject><issn>1063-7818</issn><issn>1468-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsH78BgOePKxOPppkj7XUDyiIqBcvIU1n28husiRb0X_vlnrwoJ4yYZ5nZniL4ozCJQUFV48zBgDvwCGAmFzP7gCoomyvGFEhdSlUVe0PNUheKk31YXGU89tgKCr5qHh9ii2SNi6xySTWpEuxsyvb-xi2X_zoE7bYfJK8jqkn2KDrU2ztKmDvHek2TcZMfCCWhBgaH9Am0uLSb9qT4qC2Q_v0-z0uXm5mz9O7cv5wez-dzEvHJfQlB7FYaFojHy-QLRfOKbAMhbKAttJS6NqCVBVVrJZItWYWagF2XI0dB6f4cXG-mxtz7012vke3djGE4VTDqBBMVnqg1I5yKeacsDZd8q1Nn4aC2QZp_ghyMC92po_dD0lys83TcDDCTICbblkPLPuN_X_BF1QUg7Y</recordid><startdate>20000430</startdate><enddate>20000430</enddate><creator>Maimistov, Andrei I</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20000430</creationdate><title>Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium</title><author>Maimistov, Andrei I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-304bb81fe35be2dbcc70a2e47a0ea98648fa0679172f6e1882a0f40a595c30c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>ANALYTICAL SOLUTION</topic><topic>ANHARMONIC OSCILLATORS</topic><topic>CARRIERS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELECTRIC FIELDS</topic><topic>ELECTROMAGNETIC FIELDS</topic><topic>ELECTROMAGNETIC PULSES</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>EQUATIONS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>NONLINEAR PROBLEMS</topic><topic>OSCILLATIONS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PULSES</topic><topic>RADIATIONS</topic><topic>RESONANCE</topic><topic>TIME DEPENDENCE</topic><topic>WAVE EQUATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maimistov, Andrei I</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maimistov, Andrei I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium</atitle><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle><date>2000-04-30</date><risdate>2000</risdate><volume>30</volume><issue>4</issue><spage>287</spage><epage>304</epage><pages>287-304</pages><issn>1063-7818</issn><eissn>1468-4799</eissn><abstract>Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper)</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1070/QE2000v030n04ABEH001712</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7818
ispartof Quantum electronics (Woodbury, N.Y.), 2000-04, Vol.30 (4), p.287-304
issn 1063-7818
1468-4799
language eng
recordid cdi_osti_scitechconnect_21442698
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects ANALYTICAL SOLUTION
ANHARMONIC OSCILLATORS
CARRIERS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DIFFERENTIAL EQUATIONS
ELECTRIC FIELDS
ELECTROMAGNETIC FIELDS
ELECTROMAGNETIC PULSES
ELECTROMAGNETIC RADIATION
EQUATIONS
MATHEMATICAL SOLUTIONS
NONLINEAR PROBLEMS
OSCILLATIONS
PARTIAL DIFFERENTIAL EQUATIONS
PULSES
RADIATIONS
RESONANCE
TIME DEPENDENCE
WAVE EQUATIONS
title Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20models%20of%20propagation%20of%20extremely%20short%20electromagnetic%20pulses%20in%20a%20nonlinear%20medium&rft.jtitle=Quantum%20electronics%20(Woodbury,%20N.Y.)&rft.au=Maimistov,%20Andrei%20I&rft.date=2000-04-30&rft.volume=30&rft.issue=4&rft.spage=287&rft.epage=304&rft.pages=287-304&rft.issn=1063-7818&rft.eissn=1468-4799&rft_id=info:doi/10.1070/QE2000v030n04ABEH001712&rft_dat=%3Ciop_osti_%3E10_1070_QE2000v030n04ABEH001712%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true