Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium
Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumption...
Gespeichert in:
Veröffentlicht in: | Quantum electronics (Woodbury, N.Y.) N.Y.), 2000-04, Vol.30 (4), p.287-304 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 304 |
---|---|
container_issue | 4 |
container_start_page | 287 |
container_title | Quantum electronics (Woodbury, N.Y.) |
container_volume | 30 |
creator | Maimistov, Andrei I |
description | Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper) |
doi_str_mv | 10.1070/QE2000v030n04ABEH001712 |
format | Article |
fullrecord | <record><control><sourceid>iop_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21442698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1070_QE2000v030n04ABEH001712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-304bb81fe35be2dbcc70a2e47a0ea98648fa0679172f6e1882a0f40a595c30c73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsH78BgOePKxOPppkj7XUDyiIqBcvIU1n28husiRb0X_vlnrwoJ4yYZ5nZniL4ozCJQUFV48zBgDvwCGAmFzP7gCoomyvGFEhdSlUVe0PNUheKk31YXGU89tgKCr5qHh9ii2SNi6xySTWpEuxsyvb-xi2X_zoE7bYfJK8jqkn2KDrU2ztKmDvHek2TcZMfCCWhBgaH9Am0uLSb9qT4qC2Q_v0-z0uXm5mz9O7cv5wez-dzEvHJfQlB7FYaFojHy-QLRfOKbAMhbKAttJS6NqCVBVVrJZItWYWagF2XI0dB6f4cXG-mxtz7012vke3djGE4VTDqBBMVnqg1I5yKeacsDZd8q1Nn4aC2QZp_ghyMC92po_dD0lys83TcDDCTICbblkPLPuN_X_BF1QUg7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Maimistov, Andrei I</creator><creatorcontrib>Maimistov, Andrei I</creatorcontrib><description>Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper)</description><identifier>ISSN: 1063-7818</identifier><identifier>EISSN: 1468-4799</identifier><identifier>DOI: 10.1070/QE2000v030n04ABEH001712</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>ANALYTICAL SOLUTION ; ANHARMONIC OSCILLATORS ; CARRIERS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFERENTIAL EQUATIONS ; ELECTRIC FIELDS ; ELECTROMAGNETIC FIELDS ; ELECTROMAGNETIC PULSES ; ELECTROMAGNETIC RADIATION ; EQUATIONS ; MATHEMATICAL SOLUTIONS ; NONLINEAR PROBLEMS ; OSCILLATIONS ; PARTIAL DIFFERENTIAL EQUATIONS ; PULSES ; RADIATIONS ; RESONANCE ; TIME DEPENDENCE ; WAVE EQUATIONS</subject><ispartof>Quantum electronics (Woodbury, N.Y.), 2000-04, Vol.30 (4), p.287-304</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-304bb81fe35be2dbcc70a2e47a0ea98648fa0679172f6e1882a0f40a595c30c73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/QE2000v030n04ABEH001712/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,53891</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21442698$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maimistov, Andrei I</creatorcontrib><title>Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium</title><title>Quantum electronics (Woodbury, N.Y.)</title><description>Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper)</description><subject>ANALYTICAL SOLUTION</subject><subject>ANHARMONIC OSCILLATORS</subject><subject>CARRIERS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>ELECTRIC FIELDS</subject><subject>ELECTROMAGNETIC FIELDS</subject><subject>ELECTROMAGNETIC PULSES</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>EQUATIONS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>NONLINEAR PROBLEMS</subject><subject>OSCILLATIONS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PULSES</subject><subject>RADIATIONS</subject><subject>RESONANCE</subject><subject>TIME DEPENDENCE</subject><subject>WAVE EQUATIONS</subject><issn>1063-7818</issn><issn>1468-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsH78BgOePKxOPppkj7XUDyiIqBcvIU1n28husiRb0X_vlnrwoJ4yYZ5nZniL4ozCJQUFV48zBgDvwCGAmFzP7gCoomyvGFEhdSlUVe0PNUheKk31YXGU89tgKCr5qHh9ii2SNi6xySTWpEuxsyvb-xi2X_zoE7bYfJK8jqkn2KDrU2ztKmDvHek2TcZMfCCWhBgaH9Am0uLSb9qT4qC2Q_v0-z0uXm5mz9O7cv5wez-dzEvHJfQlB7FYaFojHy-QLRfOKbAMhbKAttJS6NqCVBVVrJZItWYWagF2XI0dB6f4cXG-mxtz7012vke3djGE4VTDqBBMVnqg1I5yKeacsDZd8q1Nn4aC2QZp_ghyMC92po_dD0lys83TcDDCTICbblkPLPuN_X_BF1QUg7Y</recordid><startdate>20000430</startdate><enddate>20000430</enddate><creator>Maimistov, Andrei I</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20000430</creationdate><title>Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium</title><author>Maimistov, Andrei I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-304bb81fe35be2dbcc70a2e47a0ea98648fa0679172f6e1882a0f40a595c30c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>ANALYTICAL SOLUTION</topic><topic>ANHARMONIC OSCILLATORS</topic><topic>CARRIERS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>ELECTRIC FIELDS</topic><topic>ELECTROMAGNETIC FIELDS</topic><topic>ELECTROMAGNETIC PULSES</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>EQUATIONS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>NONLINEAR PROBLEMS</topic><topic>OSCILLATIONS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PULSES</topic><topic>RADIATIONS</topic><topic>RESONANCE</topic><topic>TIME DEPENDENCE</topic><topic>WAVE EQUATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maimistov, Andrei I</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maimistov, Andrei I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium</atitle><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle><date>2000-04-30</date><risdate>2000</risdate><volume>30</volume><issue>4</issue><spage>287</spage><epage>304</epage><pages>287-304</pages><issn>1063-7818</issn><eissn>1468-4799</eissn><abstract>Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper)</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1070/QE2000v030n04ABEH001712</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7818 |
ispartof | Quantum electronics (Woodbury, N.Y.), 2000-04, Vol.30 (4), p.287-304 |
issn | 1063-7818 1468-4799 |
language | eng |
recordid | cdi_osti_scitechconnect_21442698 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | ANALYTICAL SOLUTION ANHARMONIC OSCILLATORS CARRIERS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DIFFERENTIAL EQUATIONS ELECTRIC FIELDS ELECTROMAGNETIC FIELDS ELECTROMAGNETIC PULSES ELECTROMAGNETIC RADIATION EQUATIONS MATHEMATICAL SOLUTIONS NONLINEAR PROBLEMS OSCILLATIONS PARTIAL DIFFERENTIAL EQUATIONS PULSES RADIATIONS RESONANCE TIME DEPENDENCE WAVE EQUATIONS |
title | Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20models%20of%20propagation%20of%20extremely%20short%20electromagnetic%20pulses%20in%20a%20nonlinear%20medium&rft.jtitle=Quantum%20electronics%20(Woodbury,%20N.Y.)&rft.au=Maimistov,%20Andrei%20I&rft.date=2000-04-30&rft.volume=30&rft.issue=4&rft.spage=287&rft.epage=304&rft.pages=287-304&rft.issn=1063-7818&rft.eissn=1468-4799&rft_id=info:doi/10.1070/QE2000v030n04ABEH001712&rft_dat=%3Ciop_osti_%3E10_1070_QE2000v030n04ABEH001712%3C/iop_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |