Breath-Hold Target Localization With Simultaneous Kilovoltage/Megavoltage Cone-Beam Computed Tomography and Fast Reconstruction

Purpose Hypofractionated high-dose radiotherapy for small lung tumors has typically been based on stereotaxy. Cone-beam computed tomography and breath-hold techniques have provided a noninvasive basis for precise cranial and extracranial patient positioning. The cone-beam computed tomography acquisi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation oncology, biology, physics biology, physics, 2010-11, Vol.78 (4), p.1219-1226
Hauptverfasser: Blessing, Manuel, M.Sc, Stsepankou, Dzmitry, M.Sc, Wertz, Hansjoerg, Ph.D, Arns, Anna, M.Sc, Lohr, Frank, M.D, Hesser, Jürgen, Ph.D, Wenz, Frederik, M.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1226
container_issue 4
container_start_page 1219
container_title International journal of radiation oncology, biology, physics
container_volume 78
creator Blessing, Manuel, M.Sc
Stsepankou, Dzmitry, M.Sc
Wertz, Hansjoerg, Ph.D
Arns, Anna, M.Sc
Lohr, Frank, M.D
Hesser, Jürgen, Ph.D
Wenz, Frederik, M.D
description Purpose Hypofractionated high-dose radiotherapy for small lung tumors has typically been based on stereotaxy. Cone-beam computed tomography and breath-hold techniques have provided a noninvasive basis for precise cranial and extracranial patient positioning. The cone-beam computed tomography acquisition time of 60 s, however, is beyond the breath-hold capacity of patients, resulting in respiratory motion artifacts. By combining megavoltage (MV) and kilovoltage (kV) photon sources (mounted perpendicularly on the linear accelerator) and accelerating the gantry rotation to the allowed limit, the data acquisition time could be reduced to 15 s. Methods and Materials An Elekta Synergy 6-MV linear accelerator, with iViewGT as the MV- and XVI as the kV-imaging device, was used with a Catphan phantom and an anthropomorphic thorax phantom. Both image sources performed continuous image acquisition, passing an angle interval of 90° within 15 s. For reconstruction, filtered back projection on a graphics processor unit was used. It reconstructed 100 projections acquired to a 512 × 512 × 512 volume within 6 s. Results The resolution in the Catphan phantom (CTP528 high-resolution module) was 3 lines/cm. The spatial accuracy was within 2–3 mm. The diameters of different tumor shapes in the thorax phantom were determined within an accuracy of 1.6 mm. The signal-to-noise ratio was 68% less than that with a 180°-kV scan. The dose generated to acquire the MV frames accumulated to 82.5 mGy, and the kV contribution was
doi_str_mv 10.1016/j.ijrobp.2010.01.030
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21438059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0360301610001306</els_id><sourcerecordid>954594752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-393db59e5a97f3a41b1438e7822cdb9b1e8ec2e8215733b722dbd938e82485f33</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EotvCP0AoEkKcsvVnPi5I7YpSxCIkWgQ3y3Emuw5JHGyn0vbCX8dRFpC49OSx9cw7M34HoRcErwkm2Xm7Nq2z1bimOD5hssYMP0IrUuRlyoT4_hitMMtwyiJ8gk69bzHGhOT8KTqhWAhOKF-hX5cOVNin17ark1vldhCSrdWqM_cqGDsk30zYJzemn7qgBrCTTz6azt7ZeN3B-SfYqWOcbOwA6SWoPkb9OAWIgra3O6fG_SFRQ51cKR-SL6Dt4IOb9Kz_DD1pVOfh-fE8Q1-v3t1urtPt5_cfNhfbVAuchZSVrK5ECUKVecMUJxXhrIC8oFTXVVkRKEBTKCgROWNVTmld1WUkCsoL0TB2hl4tutYHI702AfQ-NjKADpLOYliUkXqzUKOzPyfwQfbGa-i6ZXRZCi5Kngv6IJlnmDJOqYgkX0jtrPcOGjk60yt3kATL2UnZysVJOTspMZHRyZj28lhgqnqo_yb9sS4Cr4-A8tGvxqlBG_-PY6zIeTlzbxcO4vfeGXDz9DBoqI2bh6-teaiT_wV0ZwYTa_6AA_jWTm6I1kkiPZVY3sxbNy8dmfeN4Yz9Bk0U00k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760234225</pqid></control><display><type>article</type><title>Breath-Hold Target Localization With Simultaneous Kilovoltage/Megavoltage Cone-Beam Computed Tomography and Fast Reconstruction</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Blessing, Manuel, M.Sc ; Stsepankou, Dzmitry, M.Sc ; Wertz, Hansjoerg, Ph.D ; Arns, Anna, M.Sc ; Lohr, Frank, M.D ; Hesser, Jürgen, Ph.D ; Wenz, Frederik, M.D</creator><creatorcontrib>Blessing, Manuel, M.Sc ; Stsepankou, Dzmitry, M.Sc ; Wertz, Hansjoerg, Ph.D ; Arns, Anna, M.Sc ; Lohr, Frank, M.D ; Hesser, Jürgen, Ph.D ; Wenz, Frederik, M.D</creatorcontrib><description>Purpose Hypofractionated high-dose radiotherapy for small lung tumors has typically been based on stereotaxy. Cone-beam computed tomography and breath-hold techniques have provided a noninvasive basis for precise cranial and extracranial patient positioning. The cone-beam computed tomography acquisition time of 60 s, however, is beyond the breath-hold capacity of patients, resulting in respiratory motion artifacts. By combining megavoltage (MV) and kilovoltage (kV) photon sources (mounted perpendicularly on the linear accelerator) and accelerating the gantry rotation to the allowed limit, the data acquisition time could be reduced to 15 s. Methods and Materials An Elekta Synergy 6-MV linear accelerator, with iViewGT as the MV- and XVI as the kV-imaging device, was used with a Catphan phantom and an anthropomorphic thorax phantom. Both image sources performed continuous image acquisition, passing an angle interval of 90° within 15 s. For reconstruction, filtered back projection on a graphics processor unit was used. It reconstructed 100 projections acquired to a 512 × 512 × 512 volume within 6 s. Results The resolution in the Catphan phantom (CTP528 high-resolution module) was 3 lines/cm. The spatial accuracy was within 2–3 mm. The diameters of different tumor shapes in the thorax phantom were determined within an accuracy of 1.6 mm. The signal-to-noise ratio was 68% less than that with a 180°-kV scan. The dose generated to acquire the MV frames accumulated to 82.5 mGy, and the kV contribution was &lt;6 mGy. Conclusion The present results have shown that fast breath-hold, on-line volume imaging with a linear accelerator using simultaneous kV–MV cone-beam computed tomography is promising and can potentially be used for image-guided radiotherapy for lung cancer patients in the near future.</description><identifier>ISSN: 0360-3016</identifier><identifier>EISSN: 1879-355X</identifier><identifier>DOI: 10.1016/j.ijrobp.2010.01.030</identifier><identifier>PMID: 20554124</identifier><identifier>CODEN: IOBPD3</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>ACCELERATORS ; Algorithms ; Biological and medical sciences ; BODY ; BREATH ; CBCT ; CHEST ; COMPUTERIZED TOMOGRAPHY ; cone-beam computed tomography ; Cone-Beam Computed Tomography - methods ; DIAGNOSTIC TECHNIQUES ; DISEASES ; fast tomographic reconstruction ; Hematology, Oncology and Palliative Medicine ; Humans ; Image guidance ; Image Processing, Computer-Assisted - methods ; Investigative techniques, diagnostic techniques (general aspects) ; kilovoltage/megavoltage imaging ; LINEAR ACCELERATORS ; Lung Neoplasms - diagnostic imaging ; Lung Neoplasms - pathology ; LUNGS ; Medical sciences ; MEDICINE ; Movement ; NEOPLASMS ; NUCLEAR MEDICINE ; ORGANS ; Particle Accelerators ; Phantoms, Imaging ; Pneumology ; Radiation Dosage ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; RADIOLOGY ; RADIOLOGY AND NUCLEAR MEDICINE ; RADIOTHERAPY ; Respiration ; RESPIRATORY SYSTEM ; THERAPY ; Time Factors ; TOMOGRAPHY ; treatment verification ; Tumor Burden ; Tumors of the respiratory system and mediastinum</subject><ispartof>International journal of radiation oncology, biology, physics, 2010-11, Vol.78 (4), p.1219-1226</ispartof><rights>Elsevier Inc.</rights><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-393db59e5a97f3a41b1438e7822cdb9b1e8ec2e8215733b722dbd938e82485f33</citedby><cites>FETCH-LOGICAL-c506t-393db59e5a97f3a41b1438e7822cdb9b1e8ec2e8215733b722dbd938e82485f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrobp.2010.01.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23387494$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20554124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21438059$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Blessing, Manuel, M.Sc</creatorcontrib><creatorcontrib>Stsepankou, Dzmitry, M.Sc</creatorcontrib><creatorcontrib>Wertz, Hansjoerg, Ph.D</creatorcontrib><creatorcontrib>Arns, Anna, M.Sc</creatorcontrib><creatorcontrib>Lohr, Frank, M.D</creatorcontrib><creatorcontrib>Hesser, Jürgen, Ph.D</creatorcontrib><creatorcontrib>Wenz, Frederik, M.D</creatorcontrib><title>Breath-Hold Target Localization With Simultaneous Kilovoltage/Megavoltage Cone-Beam Computed Tomography and Fast Reconstruction</title><title>International journal of radiation oncology, biology, physics</title><addtitle>Int J Radiat Oncol Biol Phys</addtitle><description>Purpose Hypofractionated high-dose radiotherapy for small lung tumors has typically been based on stereotaxy. Cone-beam computed tomography and breath-hold techniques have provided a noninvasive basis for precise cranial and extracranial patient positioning. The cone-beam computed tomography acquisition time of 60 s, however, is beyond the breath-hold capacity of patients, resulting in respiratory motion artifacts. By combining megavoltage (MV) and kilovoltage (kV) photon sources (mounted perpendicularly on the linear accelerator) and accelerating the gantry rotation to the allowed limit, the data acquisition time could be reduced to 15 s. Methods and Materials An Elekta Synergy 6-MV linear accelerator, with iViewGT as the MV- and XVI as the kV-imaging device, was used with a Catphan phantom and an anthropomorphic thorax phantom. Both image sources performed continuous image acquisition, passing an angle interval of 90° within 15 s. For reconstruction, filtered back projection on a graphics processor unit was used. It reconstructed 100 projections acquired to a 512 × 512 × 512 volume within 6 s. Results The resolution in the Catphan phantom (CTP528 high-resolution module) was 3 lines/cm. The spatial accuracy was within 2–3 mm. The diameters of different tumor shapes in the thorax phantom were determined within an accuracy of 1.6 mm. The signal-to-noise ratio was 68% less than that with a 180°-kV scan. The dose generated to acquire the MV frames accumulated to 82.5 mGy, and the kV contribution was &lt;6 mGy. Conclusion The present results have shown that fast breath-hold, on-line volume imaging with a linear accelerator using simultaneous kV–MV cone-beam computed tomography is promising and can potentially be used for image-guided radiotherapy for lung cancer patients in the near future.</description><subject>ACCELERATORS</subject><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>BODY</subject><subject>BREATH</subject><subject>CBCT</subject><subject>CHEST</subject><subject>COMPUTERIZED TOMOGRAPHY</subject><subject>cone-beam computed tomography</subject><subject>Cone-Beam Computed Tomography - methods</subject><subject>DIAGNOSTIC TECHNIQUES</subject><subject>DISEASES</subject><subject>fast tomographic reconstruction</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Image guidance</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>kilovoltage/megavoltage imaging</subject><subject>LINEAR ACCELERATORS</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Lung Neoplasms - pathology</subject><subject>LUNGS</subject><subject>Medical sciences</subject><subject>MEDICINE</subject><subject>Movement</subject><subject>NEOPLASMS</subject><subject>NUCLEAR MEDICINE</subject><subject>ORGANS</subject><subject>Particle Accelerators</subject><subject>Phantoms, Imaging</subject><subject>Pneumology</subject><subject>Radiation Dosage</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>RADIOLOGY</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>RADIOTHERAPY</subject><subject>Respiration</subject><subject>RESPIRATORY SYSTEM</subject><subject>THERAPY</subject><subject>Time Factors</subject><subject>TOMOGRAPHY</subject><subject>treatment verification</subject><subject>Tumor Burden</subject><subject>Tumors of the respiratory system and mediastinum</subject><issn>0360-3016</issn><issn>1879-355X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhi0EotvCP0AoEkKcsvVnPi5I7YpSxCIkWgQ3y3Emuw5JHGyn0vbCX8dRFpC49OSx9cw7M34HoRcErwkm2Xm7Nq2z1bimOD5hssYMP0IrUuRlyoT4_hitMMtwyiJ8gk69bzHGhOT8KTqhWAhOKF-hX5cOVNin17ark1vldhCSrdWqM_cqGDsk30zYJzemn7qgBrCTTz6azt7ZeN3B-SfYqWOcbOwA6SWoPkb9OAWIgra3O6fG_SFRQ51cKR-SL6Dt4IOb9Kz_DD1pVOfh-fE8Q1-v3t1urtPt5_cfNhfbVAuchZSVrK5ECUKVecMUJxXhrIC8oFTXVVkRKEBTKCgROWNVTmld1WUkCsoL0TB2hl4tutYHI702AfQ-NjKADpLOYliUkXqzUKOzPyfwQfbGa-i6ZXRZCi5Kngv6IJlnmDJOqYgkX0jtrPcOGjk60yt3kATL2UnZysVJOTspMZHRyZj28lhgqnqo_yb9sS4Cr4-A8tGvxqlBG_-PY6zIeTlzbxcO4vfeGXDz9DBoqI2bh6-teaiT_wV0ZwYTa_6AA_jWTm6I1kkiPZVY3sxbNy8dmfeN4Yz9Bk0U00k</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Blessing, Manuel, M.Sc</creator><creator>Stsepankou, Dzmitry, M.Sc</creator><creator>Wertz, Hansjoerg, Ph.D</creator><creator>Arns, Anna, M.Sc</creator><creator>Lohr, Frank, M.D</creator><creator>Hesser, Jürgen, Ph.D</creator><creator>Wenz, Frederik, M.D</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>OTOTI</scope></search><sort><creationdate>20101115</creationdate><title>Breath-Hold Target Localization With Simultaneous Kilovoltage/Megavoltage Cone-Beam Computed Tomography and Fast Reconstruction</title><author>Blessing, Manuel, M.Sc ; Stsepankou, Dzmitry, M.Sc ; Wertz, Hansjoerg, Ph.D ; Arns, Anna, M.Sc ; Lohr, Frank, M.D ; Hesser, Jürgen, Ph.D ; Wenz, Frederik, M.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-393db59e5a97f3a41b1438e7822cdb9b1e8ec2e8215733b722dbd938e82485f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ACCELERATORS</topic><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>BODY</topic><topic>BREATH</topic><topic>CBCT</topic><topic>CHEST</topic><topic>COMPUTERIZED TOMOGRAPHY</topic><topic>cone-beam computed tomography</topic><topic>Cone-Beam Computed Tomography - methods</topic><topic>DIAGNOSTIC TECHNIQUES</topic><topic>DISEASES</topic><topic>fast tomographic reconstruction</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Image guidance</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>kilovoltage/megavoltage imaging</topic><topic>LINEAR ACCELERATORS</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Lung Neoplasms - pathology</topic><topic>LUNGS</topic><topic>Medical sciences</topic><topic>MEDICINE</topic><topic>Movement</topic><topic>NEOPLASMS</topic><topic>NUCLEAR MEDICINE</topic><topic>ORGANS</topic><topic>Particle Accelerators</topic><topic>Phantoms, Imaging</topic><topic>Pneumology</topic><topic>Radiation Dosage</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>RADIOLOGY</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>RADIOTHERAPY</topic><topic>Respiration</topic><topic>RESPIRATORY SYSTEM</topic><topic>THERAPY</topic><topic>Time Factors</topic><topic>TOMOGRAPHY</topic><topic>treatment verification</topic><topic>Tumor Burden</topic><topic>Tumors of the respiratory system and mediastinum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blessing, Manuel, M.Sc</creatorcontrib><creatorcontrib>Stsepankou, Dzmitry, M.Sc</creatorcontrib><creatorcontrib>Wertz, Hansjoerg, Ph.D</creatorcontrib><creatorcontrib>Arns, Anna, M.Sc</creatorcontrib><creatorcontrib>Lohr, Frank, M.D</creatorcontrib><creatorcontrib>Hesser, Jürgen, Ph.D</creatorcontrib><creatorcontrib>Wenz, Frederik, M.D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>International journal of radiation oncology, biology, physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blessing, Manuel, M.Sc</au><au>Stsepankou, Dzmitry, M.Sc</au><au>Wertz, Hansjoerg, Ph.D</au><au>Arns, Anna, M.Sc</au><au>Lohr, Frank, M.D</au><au>Hesser, Jürgen, Ph.D</au><au>Wenz, Frederik, M.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breath-Hold Target Localization With Simultaneous Kilovoltage/Megavoltage Cone-Beam Computed Tomography and Fast Reconstruction</atitle><jtitle>International journal of radiation oncology, biology, physics</jtitle><addtitle>Int J Radiat Oncol Biol Phys</addtitle><date>2010-11-15</date><risdate>2010</risdate><volume>78</volume><issue>4</issue><spage>1219</spage><epage>1226</epage><pages>1219-1226</pages><issn>0360-3016</issn><eissn>1879-355X</eissn><coden>IOBPD3</coden><abstract>Purpose Hypofractionated high-dose radiotherapy for small lung tumors has typically been based on stereotaxy. Cone-beam computed tomography and breath-hold techniques have provided a noninvasive basis for precise cranial and extracranial patient positioning. The cone-beam computed tomography acquisition time of 60 s, however, is beyond the breath-hold capacity of patients, resulting in respiratory motion artifacts. By combining megavoltage (MV) and kilovoltage (kV) photon sources (mounted perpendicularly on the linear accelerator) and accelerating the gantry rotation to the allowed limit, the data acquisition time could be reduced to 15 s. Methods and Materials An Elekta Synergy 6-MV linear accelerator, with iViewGT as the MV- and XVI as the kV-imaging device, was used with a Catphan phantom and an anthropomorphic thorax phantom. Both image sources performed continuous image acquisition, passing an angle interval of 90° within 15 s. For reconstruction, filtered back projection on a graphics processor unit was used. It reconstructed 100 projections acquired to a 512 × 512 × 512 volume within 6 s. Results The resolution in the Catphan phantom (CTP528 high-resolution module) was 3 lines/cm. The spatial accuracy was within 2–3 mm. The diameters of different tumor shapes in the thorax phantom were determined within an accuracy of 1.6 mm. The signal-to-noise ratio was 68% less than that with a 180°-kV scan. The dose generated to acquire the MV frames accumulated to 82.5 mGy, and the kV contribution was &lt;6 mGy. Conclusion The present results have shown that fast breath-hold, on-line volume imaging with a linear accelerator using simultaneous kV–MV cone-beam computed tomography is promising and can potentially be used for image-guided radiotherapy for lung cancer patients in the near future.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>20554124</pmid><doi>10.1016/j.ijrobp.2010.01.030</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3016
ispartof International journal of radiation oncology, biology, physics, 2010-11, Vol.78 (4), p.1219-1226
issn 0360-3016
1879-355X
language eng
recordid cdi_osti_scitechconnect_21438059
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects ACCELERATORS
Algorithms
Biological and medical sciences
BODY
BREATH
CBCT
CHEST
COMPUTERIZED TOMOGRAPHY
cone-beam computed tomography
Cone-Beam Computed Tomography - methods
DIAGNOSTIC TECHNIQUES
DISEASES
fast tomographic reconstruction
Hematology, Oncology and Palliative Medicine
Humans
Image guidance
Image Processing, Computer-Assisted - methods
Investigative techniques, diagnostic techniques (general aspects)
kilovoltage/megavoltage imaging
LINEAR ACCELERATORS
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - pathology
LUNGS
Medical sciences
MEDICINE
Movement
NEOPLASMS
NUCLEAR MEDICINE
ORGANS
Particle Accelerators
Phantoms, Imaging
Pneumology
Radiation Dosage
Radiodiagnosis. Nmr imagery. Nmr spectrometry
RADIOLOGY
RADIOLOGY AND NUCLEAR MEDICINE
RADIOTHERAPY
Respiration
RESPIRATORY SYSTEM
THERAPY
Time Factors
TOMOGRAPHY
treatment verification
Tumor Burden
Tumors of the respiratory system and mediastinum
title Breath-Hold Target Localization With Simultaneous Kilovoltage/Megavoltage Cone-Beam Computed Tomography and Fast Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breath-Hold%20Target%20Localization%20With%20Simultaneous%20Kilovoltage/Megavoltage%20Cone-Beam%20Computed%20Tomography%20and%20Fast%20Reconstruction&rft.jtitle=International%20journal%20of%20radiation%20oncology,%20biology,%20physics&rft.au=Blessing,%20Manuel,%20M.Sc&rft.date=2010-11-15&rft.volume=78&rft.issue=4&rft.spage=1219&rft.epage=1226&rft.pages=1219-1226&rft.issn=0360-3016&rft.eissn=1879-355X&rft.coden=IOBPD3&rft_id=info:doi/10.1016/j.ijrobp.2010.01.030&rft_dat=%3Cproquest_osti_%3E954594752%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=760234225&rft_id=info:pmid/20554124&rft_els_id=1_s2_0_S0360301610001306&rfr_iscdi=true