Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model
Purpose Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods Immunohistolog...
Gespeichert in:
Veröffentlicht in: | International journal of radiation oncology, biology, physics biology, physics, 2010-08, Vol.77 (5), p.1500-1508 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1508 |
---|---|
container_issue | 5 |
container_start_page | 1500 |
container_title | International journal of radiation oncology, biology, physics |
container_volume | 77 |
creator | Fokas, Emmanouil, M.D Hänze, Jörg, Ph.D Kamlah, Florentine, D.V.M Eul, Bastian G., M.D Lang, Nico, M.D Keil, Boris, M.D Heverhagen, Johannes T., M.D., Ph.D Engenhart-Cabillic, Rita, M.D An, Hanxiang, M.D Rose, Frank, M.D |
description | Purpose Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast–enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results CCI-103F signals measuring the fraction of hypoxic areas after IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged. |
doi_str_mv | 10.1016/j.ijrobp.2010.01.060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21436124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360301610002622</els_id><sourcerecordid>733600848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-6e067f8fb81f5ab2c407349a2dd12074fd53ff2d528692d7b7879182e004dd643</originalsourceid><addsrcrecordid>eNqFkl1rFDEUhgdR7Fr9ByIBEa9mPfmYj70RSl1toUXBCr0L2eSkZjubjMmM7P57M85WwRuvwgnP-XjPe4riJYUlBVq_2y7dNoZNv2SQv4AuoYZHxYK2zarkVXX7uFgAr6HkGT4pnqW0BQBKG_G0OGFQ82bVtItifxmjMk4NLvjyA_boDfqBrK1FPSQSPLkZdyGSLxjtmDJElDdk7U24Qx_GNIf7h-ji0Ie9U-RaxXuMibiJJ2eVWJHbTNxFZQdyHQx2z4snVnUJXxzf0-Lbx_XN-UV59fnT5fnZValFVQ1ljVA3trWbltpKbZgW0HCxUswYyqAR1lTcWmYq1tYrZppNk_XTliGAMKYW_LR4PdcNaXAyaTeg_q6D91mfZFTwmrKJejtTfQw_RkyD3LmkseuUx6xLNjyvElrRZlLMpI4hpYhW9tHtVDxICnIyRm7lbIycjJFAZTYmp706Nhg3OzR_kh6cyMCbI6CSVp2NymuX_nI8VxG_ufczh3lpPx3GSRN6jcbFSZIJ7n-T_FtAd8673PMeD5i2YYw-GyKpTEyC_Dod0XRDNJ8PqxnjvwCK7cGV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733600848</pqid></control><display><type>article</type><title>Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fokas, Emmanouil, M.D ; Hänze, Jörg, Ph.D ; Kamlah, Florentine, D.V.M ; Eul, Bastian G., M.D ; Lang, Nico, M.D ; Keil, Boris, M.D ; Heverhagen, Johannes T., M.D., Ph.D ; Engenhart-Cabillic, Rita, M.D ; An, Hanxiang, M.D ; Rose, Frank, M.D</creator><creatorcontrib>Fokas, Emmanouil, M.D ; Hänze, Jörg, Ph.D ; Kamlah, Florentine, D.V.M ; Eul, Bastian G., M.D ; Lang, Nico, M.D ; Keil, Boris, M.D ; Heverhagen, Johannes T., M.D., Ph.D ; Engenhart-Cabillic, Rita, M.D ; An, Hanxiang, M.D ; Rose, Frank, M.D</creatorcontrib><description>Purpose Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast–enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results CCI-103F signals measuring the fraction of hypoxic areas after IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.</description><identifier>ISSN: 0360-3016</identifier><identifier>EISSN: 1879-355X</identifier><identifier>DOI: 10.1016/j.ijrobp.2010.01.060</identifier><identifier>PMID: 20637978</identifier><identifier>CODEN: IOBPD3</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>A549 xenograft ; Adenocarcinoma - blood supply ; Adenocarcinoma - metabolism ; Adenocarcinoma - radiotherapy ; Animals ; ANOXIA ; Apoptosis - radiation effects ; Benzimidazoles - metabolism ; Biological and medical sciences ; BIOLOGICAL MARKERS ; Biomarkers - metabolism ; BODY ; CARCINOMAS ; Caspase 3 - analysis ; Caspase 3 - immunology ; Cell Hypoxia - radiation effects ; Contrast Media - metabolism ; DCE-MRI ; DIAGNOSTIC TECHNIQUES ; DISEASES ; Gadolinium - metabolism ; Glucose Transporter Type 1 - metabolism ; Hematology, Oncology and Palliative Medicine ; Humans ; hypoxia ; Irradiation ; Lung Neoplasms - blood supply ; Lung Neoplasms - metabolism ; Lung Neoplasms - radiotherapy ; LUNGS ; Magnetic Resonance Imaging - methods ; Male ; Medical sciences ; Mice ; Mice, Nude ; Microscopy, Fluorescence ; NEOPLASMS ; Nitroimidazoles - metabolism ; NMR IMAGING ; ORGANS ; perfusion ; Platelet Endothelial Cell Adhesion Molecule-1 - analysis ; Platelet Endothelial Cell Adhesion Molecule-1 - immunology ; Pneumology ; Radiation therapy and radiosensitizing agent ; Radiology ; RADIOLOGY AND NUCLEAR MEDICINE ; RADIOSENSITIVITY ; RESPIRATORY SYSTEM ; SENSITIVITY ; Time Factors ; Transplantation, Heterologous ; Treatment with physical agents ; Treatment. General aspects ; Tumors ; Tumors of the respiratory system and mediastinum</subject><ispartof>International journal of radiation oncology, biology, physics, 2010-08, Vol.77 (5), p.1500-1508</ispartof><rights>Elsevier Inc.</rights><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-6e067f8fb81f5ab2c407349a2dd12074fd53ff2d528692d7b7879182e004dd643</citedby><cites>FETCH-LOGICAL-c455t-6e067f8fb81f5ab2c407349a2dd12074fd53ff2d528692d7b7879182e004dd643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360301610002622$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23060478$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20637978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21436124$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fokas, Emmanouil, M.D</creatorcontrib><creatorcontrib>Hänze, Jörg, Ph.D</creatorcontrib><creatorcontrib>Kamlah, Florentine, D.V.M</creatorcontrib><creatorcontrib>Eul, Bastian G., M.D</creatorcontrib><creatorcontrib>Lang, Nico, M.D</creatorcontrib><creatorcontrib>Keil, Boris, M.D</creatorcontrib><creatorcontrib>Heverhagen, Johannes T., M.D., Ph.D</creatorcontrib><creatorcontrib>Engenhart-Cabillic, Rita, M.D</creatorcontrib><creatorcontrib>An, Hanxiang, M.D</creatorcontrib><creatorcontrib>Rose, Frank, M.D</creatorcontrib><title>Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model</title><title>International journal of radiation oncology, biology, physics</title><addtitle>Int J Radiat Oncol Biol Phys</addtitle><description>Purpose Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast–enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results CCI-103F signals measuring the fraction of hypoxic areas after IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.</description><subject>A549 xenograft</subject><subject>Adenocarcinoma - blood supply</subject><subject>Adenocarcinoma - metabolism</subject><subject>Adenocarcinoma - radiotherapy</subject><subject>Animals</subject><subject>ANOXIA</subject><subject>Apoptosis - radiation effects</subject><subject>Benzimidazoles - metabolism</subject><subject>Biological and medical sciences</subject><subject>BIOLOGICAL MARKERS</subject><subject>Biomarkers - metabolism</subject><subject>BODY</subject><subject>CARCINOMAS</subject><subject>Caspase 3 - analysis</subject><subject>Caspase 3 - immunology</subject><subject>Cell Hypoxia - radiation effects</subject><subject>Contrast Media - metabolism</subject><subject>DCE-MRI</subject><subject>DIAGNOSTIC TECHNIQUES</subject><subject>DISEASES</subject><subject>Gadolinium - metabolism</subject><subject>Glucose Transporter Type 1 - metabolism</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>hypoxia</subject><subject>Irradiation</subject><subject>Lung Neoplasms - blood supply</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - radiotherapy</subject><subject>LUNGS</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Microscopy, Fluorescence</subject><subject>NEOPLASMS</subject><subject>Nitroimidazoles - metabolism</subject><subject>NMR IMAGING</subject><subject>ORGANS</subject><subject>perfusion</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1 - analysis</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1 - immunology</subject><subject>Pneumology</subject><subject>Radiation therapy and radiosensitizing agent</subject><subject>Radiology</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>RADIOSENSITIVITY</subject><subject>RESPIRATORY SYSTEM</subject><subject>SENSITIVITY</subject><subject>Time Factors</subject><subject>Transplantation, Heterologous</subject><subject>Treatment with physical agents</subject><subject>Treatment. General aspects</subject><subject>Tumors</subject><subject>Tumors of the respiratory system and mediastinum</subject><issn>0360-3016</issn><issn>1879-355X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl1rFDEUhgdR7Fr9ByIBEa9mPfmYj70RSl1toUXBCr0L2eSkZjubjMmM7P57M85WwRuvwgnP-XjPe4riJYUlBVq_2y7dNoZNv2SQv4AuoYZHxYK2zarkVXX7uFgAr6HkGT4pnqW0BQBKG_G0OGFQ82bVtItifxmjMk4NLvjyA_boDfqBrK1FPSQSPLkZdyGSLxjtmDJElDdk7U24Qx_GNIf7h-ji0Ie9U-RaxXuMibiJJ2eVWJHbTNxFZQdyHQx2z4snVnUJXxzf0-Lbx_XN-UV59fnT5fnZValFVQ1ljVA3trWbltpKbZgW0HCxUswYyqAR1lTcWmYq1tYrZppNk_XTliGAMKYW_LR4PdcNaXAyaTeg_q6D91mfZFTwmrKJejtTfQw_RkyD3LmkseuUx6xLNjyvElrRZlLMpI4hpYhW9tHtVDxICnIyRm7lbIycjJFAZTYmp706Nhg3OzR_kh6cyMCbI6CSVp2NymuX_nI8VxG_ufczh3lpPx3GSRN6jcbFSZIJ7n-T_FtAd8673PMeD5i2YYw-GyKpTEyC_Dod0XRDNJ8PqxnjvwCK7cGV</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Fokas, Emmanouil, M.D</creator><creator>Hänze, Jörg, Ph.D</creator><creator>Kamlah, Florentine, D.V.M</creator><creator>Eul, Bastian G., M.D</creator><creator>Lang, Nico, M.D</creator><creator>Keil, Boris, M.D</creator><creator>Heverhagen, Johannes T., M.D., Ph.D</creator><creator>Engenhart-Cabillic, Rita, M.D</creator><creator>An, Hanxiang, M.D</creator><creator>Rose, Frank, M.D</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20100801</creationdate><title>Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model</title><author>Fokas, Emmanouil, M.D ; Hänze, Jörg, Ph.D ; Kamlah, Florentine, D.V.M ; Eul, Bastian G., M.D ; Lang, Nico, M.D ; Keil, Boris, M.D ; Heverhagen, Johannes T., M.D., Ph.D ; Engenhart-Cabillic, Rita, M.D ; An, Hanxiang, M.D ; Rose, Frank, M.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-6e067f8fb81f5ab2c407349a2dd12074fd53ff2d528692d7b7879182e004dd643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A549 xenograft</topic><topic>Adenocarcinoma - blood supply</topic><topic>Adenocarcinoma - metabolism</topic><topic>Adenocarcinoma - radiotherapy</topic><topic>Animals</topic><topic>ANOXIA</topic><topic>Apoptosis - radiation effects</topic><topic>Benzimidazoles - metabolism</topic><topic>Biological and medical sciences</topic><topic>BIOLOGICAL MARKERS</topic><topic>Biomarkers - metabolism</topic><topic>BODY</topic><topic>CARCINOMAS</topic><topic>Caspase 3 - analysis</topic><topic>Caspase 3 - immunology</topic><topic>Cell Hypoxia - radiation effects</topic><topic>Contrast Media - metabolism</topic><topic>DCE-MRI</topic><topic>DIAGNOSTIC TECHNIQUES</topic><topic>DISEASES</topic><topic>Gadolinium - metabolism</topic><topic>Glucose Transporter Type 1 - metabolism</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>hypoxia</topic><topic>Irradiation</topic><topic>Lung Neoplasms - blood supply</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - radiotherapy</topic><topic>LUNGS</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Microscopy, Fluorescence</topic><topic>NEOPLASMS</topic><topic>Nitroimidazoles - metabolism</topic><topic>NMR IMAGING</topic><topic>ORGANS</topic><topic>perfusion</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1 - analysis</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1 - immunology</topic><topic>Pneumology</topic><topic>Radiation therapy and radiosensitizing agent</topic><topic>Radiology</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>RADIOSENSITIVITY</topic><topic>RESPIRATORY SYSTEM</topic><topic>SENSITIVITY</topic><topic>Time Factors</topic><topic>Transplantation, Heterologous</topic><topic>Treatment with physical agents</topic><topic>Treatment. General aspects</topic><topic>Tumors</topic><topic>Tumors of the respiratory system and mediastinum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fokas, Emmanouil, M.D</creatorcontrib><creatorcontrib>Hänze, Jörg, Ph.D</creatorcontrib><creatorcontrib>Kamlah, Florentine, D.V.M</creatorcontrib><creatorcontrib>Eul, Bastian G., M.D</creatorcontrib><creatorcontrib>Lang, Nico, M.D</creatorcontrib><creatorcontrib>Keil, Boris, M.D</creatorcontrib><creatorcontrib>Heverhagen, Johannes T., M.D., Ph.D</creatorcontrib><creatorcontrib>Engenhart-Cabillic, Rita, M.D</creatorcontrib><creatorcontrib>An, Hanxiang, M.D</creatorcontrib><creatorcontrib>Rose, Frank, M.D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>International journal of radiation oncology, biology, physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fokas, Emmanouil, M.D</au><au>Hänze, Jörg, Ph.D</au><au>Kamlah, Florentine, D.V.M</au><au>Eul, Bastian G., M.D</au><au>Lang, Nico, M.D</au><au>Keil, Boris, M.D</au><au>Heverhagen, Johannes T., M.D., Ph.D</au><au>Engenhart-Cabillic, Rita, M.D</au><au>An, Hanxiang, M.D</au><au>Rose, Frank, M.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model</atitle><jtitle>International journal of radiation oncology, biology, physics</jtitle><addtitle>Int J Radiat Oncol Biol Phys</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>77</volume><issue>5</issue><spage>1500</spage><epage>1508</epage><pages>1500-1508</pages><issn>0360-3016</issn><eissn>1879-355X</eissn><coden>IOBPD3</coden><abstract>Purpose Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast–enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results CCI-103F signals measuring the fraction of hypoxic areas after IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>20637978</pmid><doi>10.1016/j.ijrobp.2010.01.060</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3016 |
ispartof | International journal of radiation oncology, biology, physics, 2010-08, Vol.77 (5), p.1500-1508 |
issn | 0360-3016 1879-355X |
language | eng |
recordid | cdi_osti_scitechconnect_21436124 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | A549 xenograft Adenocarcinoma - blood supply Adenocarcinoma - metabolism Adenocarcinoma - radiotherapy Animals ANOXIA Apoptosis - radiation effects Benzimidazoles - metabolism Biological and medical sciences BIOLOGICAL MARKERS Biomarkers - metabolism BODY CARCINOMAS Caspase 3 - analysis Caspase 3 - immunology Cell Hypoxia - radiation effects Contrast Media - metabolism DCE-MRI DIAGNOSTIC TECHNIQUES DISEASES Gadolinium - metabolism Glucose Transporter Type 1 - metabolism Hematology, Oncology and Palliative Medicine Humans hypoxia Irradiation Lung Neoplasms - blood supply Lung Neoplasms - metabolism Lung Neoplasms - radiotherapy LUNGS Magnetic Resonance Imaging - methods Male Medical sciences Mice Mice, Nude Microscopy, Fluorescence NEOPLASMS Nitroimidazoles - metabolism NMR IMAGING ORGANS perfusion Platelet Endothelial Cell Adhesion Molecule-1 - analysis Platelet Endothelial Cell Adhesion Molecule-1 - immunology Pneumology Radiation therapy and radiosensitizing agent Radiology RADIOLOGY AND NUCLEAR MEDICINE RADIOSENSITIVITY RESPIRATORY SYSTEM SENSITIVITY Time Factors Transplantation, Heterologous Treatment with physical agents Treatment. General aspects Tumors Tumors of the respiratory system and mediastinum |
title | Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irradiation-Dependent%20Effects%20on%20Tumor%20Perfusion%20and%20Endogenous%20and%20Exogenous%20Hypoxia%20Markers%20in%20an%20A549%20Xenograft%20Model&rft.jtitle=International%20journal%20of%20radiation%20oncology,%20biology,%20physics&rft.au=Fokas,%20Emmanouil,%20M.D&rft.date=2010-08-01&rft.volume=77&rft.issue=5&rft.spage=1500&rft.epage=1508&rft.pages=1500-1508&rft.issn=0360-3016&rft.eissn=1879-355X&rft.coden=IOBPD3&rft_id=info:doi/10.1016/j.ijrobp.2010.01.060&rft_dat=%3Cproquest_osti_%3E733600848%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733600848&rft_id=info:pmid/20637978&rft_els_id=S0360301610002622&rfr_iscdi=true |