Wall forces produced during ITER disruptions

Nonlinear simulations with the M3D code [ W. Park , Phys. Plasmas 6 , 1796 ( 1999 ) ] are performed of disruptions produced by large scale magnetohydrodynamic instabilities. The toroidally asymmetric wall forces produced during a disruption are calculated in an ITER [ T. Hender , Nucl. Fusion 47 , S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2010-08, Vol.17 (8), p.082505-082505-9
Hauptverfasser: Strauss, H. R., Paccagnella, R., Breslau, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 082505-9
container_issue 8
container_start_page 082505
container_title Physics of plasmas
container_volume 17
creator Strauss, H. R.
Paccagnella, R.
Breslau, J.
description Nonlinear simulations with the M3D code [ W. Park , Phys. Plasmas 6 , 1796 ( 1999 ) ] are performed of disruptions produced by large scale magnetohydrodynamic instabilities. The toroidally asymmetric wall forces produced during a disruption are calculated in an ITER [ T. Hender , Nucl. Fusion 47 , S128 ( 2007 ) ] model. The disruption is produced by a vertical displacement event and a kink mode. Expressions are derived for the wall force, including the sideways force, using a thin conducting wall model. The scaling of wall force with γ τ w is obtained, where γ is the kink growth rate and τ w is the wall penetration time. The largest force occurs with γ τ w ≈ 1 . A theory is developed of the wall force produced by kink modes. The theory is in qualitative agreement with the simulations and Joint European Torus [ V. Riccardo , Nucl. Fusion 49 , 055012 ( 2009 ) ] experiments. In particular, the theory and simulations give dependence of the sideways on γ τ w , correlation of sideways force with sideways plasma displacement, and correlation of toroidally varying plasma current with toroidally varying vertical displacement.
doi_str_mv 10.1063/1.3474922
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21432224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-ab7e544fd7e40c3925cb3a93ccbc0d452ea0cc28778a5fbdaa7eb8d4099a9fb23</originalsourceid><addsrcrecordid>eNp1kE9LwzAchoMoOKcHv0HBk2Bn_rVpLoKMqYOBIBO9heSXRCOzKUl78Nu70nn09L6HhxfeB6FLghcE1-yWLBgXXFJ6hGYEN7IUteDHYxe4rGv-forOcv7CGPO6ambo5k3vdoWPCVwuuhTtAM4Wdkih_SjW29VLYUNOQ9eH2OZzdOL1LruLQ87R68Nqu3wqN8-P6-X9pgRGaF9qI1zFubfCcQxM0goM05IBGMCWV9RpDEAbIRpdeWO1Fs40lmMptfSGsjm6mnZj7oPKEHoHnxDb1kGvKOGMUsr31PVEQYo5J-dVl8K3Tj-KYDXKUEQdZOzZu4kdx_R45n94NKImI-rPCPsFGXJmVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wall forces produced during ITER disruptions</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Strauss, H. R. ; Paccagnella, R. ; Breslau, J.</creator><creatorcontrib>Strauss, H. R. ; Paccagnella, R. ; Breslau, J.</creatorcontrib><description>Nonlinear simulations with the M3D code [ W. Park , Phys. Plasmas 6 , 1796 ( 1999 ) ] are performed of disruptions produced by large scale magnetohydrodynamic instabilities. The toroidally asymmetric wall forces produced during a disruption are calculated in an ITER [ T. Hender , Nucl. Fusion 47 , S128 ( 2007 ) ] model. The disruption is produced by a vertical displacement event and a kink mode. Expressions are derived for the wall force, including the sideways force, using a thin conducting wall model. The scaling of wall force with γ τ w is obtained, where γ is the kink growth rate and τ w is the wall penetration time. The largest force occurs with γ τ w ≈ 1 . A theory is developed of the wall force produced by kink modes. The theory is in qualitative agreement with the simulations and Joint European Torus [ V. Riccardo , Nucl. Fusion 49 , 055012 ( 2009 ) ] experiments. In particular, the theory and simulations give dependence of the sideways on γ τ w , correlation of sideways force with sideways plasma displacement, and correlation of toroidally varying plasma current with toroidally varying vertical displacement.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.3474922</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; CLOSED PLASMA DEVICES ; FLUID MECHANICS ; HYDRODYNAMICS ; INSTABILITY ; ITER TOKAMAK ; JET TOKAMAK ; MAGNETOHYDRODYNAMICS ; MECHANICS ; NONLINEAR PROBLEMS ; PLASMA ; PLASMA INSTABILITY ; PLASMA SIMULATION ; SIMULATION ; THERMONUCLEAR DEVICES ; THERMONUCLEAR REACTORS ; TOKAMAK DEVICES ; TOKAMAK TYPE REACTORS ; WALL EFFECTS</subject><ispartof>Physics of plasmas, 2010-08, Vol.17 (8), p.082505-082505-9</ispartof><rights>2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-ab7e544fd7e40c3925cb3a93ccbc0d452ea0cc28778a5fbdaa7eb8d4099a9fb23</citedby><cites>FETCH-LOGICAL-c312t-ab7e544fd7e40c3925cb3a93ccbc0d452ea0cc28778a5fbdaa7eb8d4099a9fb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.3474922$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76127,76133</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21432224$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Strauss, H. R.</creatorcontrib><creatorcontrib>Paccagnella, R.</creatorcontrib><creatorcontrib>Breslau, J.</creatorcontrib><title>Wall forces produced during ITER disruptions</title><title>Physics of plasmas</title><description>Nonlinear simulations with the M3D code [ W. Park , Phys. Plasmas 6 , 1796 ( 1999 ) ] are performed of disruptions produced by large scale magnetohydrodynamic instabilities. The toroidally asymmetric wall forces produced during a disruption are calculated in an ITER [ T. Hender , Nucl. Fusion 47 , S128 ( 2007 ) ] model. The disruption is produced by a vertical displacement event and a kink mode. Expressions are derived for the wall force, including the sideways force, using a thin conducting wall model. The scaling of wall force with γ τ w is obtained, where γ is the kink growth rate and τ w is the wall penetration time. The largest force occurs with γ τ w ≈ 1 . A theory is developed of the wall force produced by kink modes. The theory is in qualitative agreement with the simulations and Joint European Torus [ V. Riccardo , Nucl. Fusion 49 , 055012 ( 2009 ) ] experiments. In particular, the theory and simulations give dependence of the sideways on γ τ w , correlation of sideways force with sideways plasma displacement, and correlation of toroidally varying plasma current with toroidally varying vertical displacement.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>CLOSED PLASMA DEVICES</subject><subject>FLUID MECHANICS</subject><subject>HYDRODYNAMICS</subject><subject>INSTABILITY</subject><subject>ITER TOKAMAK</subject><subject>JET TOKAMAK</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MECHANICS</subject><subject>NONLINEAR PROBLEMS</subject><subject>PLASMA</subject><subject>PLASMA INSTABILITY</subject><subject>PLASMA SIMULATION</subject><subject>SIMULATION</subject><subject>THERMONUCLEAR DEVICES</subject><subject>THERMONUCLEAR REACTORS</subject><subject>TOKAMAK DEVICES</subject><subject>TOKAMAK TYPE REACTORS</subject><subject>WALL EFFECTS</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LwzAchoMoOKcHv0HBk2Bn_rVpLoKMqYOBIBO9heSXRCOzKUl78Nu70nn09L6HhxfeB6FLghcE1-yWLBgXXFJ6hGYEN7IUteDHYxe4rGv-forOcv7CGPO6ambo5k3vdoWPCVwuuhTtAM4Wdkih_SjW29VLYUNOQ9eH2OZzdOL1LruLQ87R68Nqu3wqN8-P6-X9pgRGaF9qI1zFubfCcQxM0goM05IBGMCWV9RpDEAbIRpdeWO1Fs40lmMptfSGsjm6mnZj7oPKEHoHnxDb1kGvKOGMUsr31PVEQYo5J-dVl8K3Tj-KYDXKUEQdZOzZu4kdx_R45n94NKImI-rPCPsFGXJmVQ</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Strauss, H. R.</creator><creator>Paccagnella, R.</creator><creator>Breslau, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20100801</creationdate><title>Wall forces produced during ITER disruptions</title><author>Strauss, H. R. ; Paccagnella, R. ; Breslau, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-ab7e544fd7e40c3925cb3a93ccbc0d452ea0cc28778a5fbdaa7eb8d4099a9fb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>CLOSED PLASMA DEVICES</topic><topic>FLUID MECHANICS</topic><topic>HYDRODYNAMICS</topic><topic>INSTABILITY</topic><topic>ITER TOKAMAK</topic><topic>JET TOKAMAK</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MECHANICS</topic><topic>NONLINEAR PROBLEMS</topic><topic>PLASMA</topic><topic>PLASMA INSTABILITY</topic><topic>PLASMA SIMULATION</topic><topic>SIMULATION</topic><topic>THERMONUCLEAR DEVICES</topic><topic>THERMONUCLEAR REACTORS</topic><topic>TOKAMAK DEVICES</topic><topic>TOKAMAK TYPE REACTORS</topic><topic>WALL EFFECTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strauss, H. R.</creatorcontrib><creatorcontrib>Paccagnella, R.</creatorcontrib><creatorcontrib>Breslau, J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strauss, H. R.</au><au>Paccagnella, R.</au><au>Breslau, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wall forces produced during ITER disruptions</atitle><jtitle>Physics of plasmas</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>17</volume><issue>8</issue><spage>082505</spage><epage>082505-9</epage><pages>082505-082505-9</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Nonlinear simulations with the M3D code [ W. Park , Phys. Plasmas 6 , 1796 ( 1999 ) ] are performed of disruptions produced by large scale magnetohydrodynamic instabilities. The toroidally asymmetric wall forces produced during a disruption are calculated in an ITER [ T. Hender , Nucl. Fusion 47 , S128 ( 2007 ) ] model. The disruption is produced by a vertical displacement event and a kink mode. Expressions are derived for the wall force, including the sideways force, using a thin conducting wall model. The scaling of wall force with γ τ w is obtained, where γ is the kink growth rate and τ w is the wall penetration time. The largest force occurs with γ τ w ≈ 1 . A theory is developed of the wall force produced by kink modes. The theory is in qualitative agreement with the simulations and Joint European Torus [ V. Riccardo , Nucl. Fusion 49 , 055012 ( 2009 ) ] experiments. In particular, the theory and simulations give dependence of the sideways on γ τ w , correlation of sideways force with sideways plasma displacement, and correlation of toroidally varying plasma current with toroidally varying vertical displacement.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3474922</doi></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2010-08, Vol.17 (8), p.082505-082505-9
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_21432224
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
CLOSED PLASMA DEVICES
FLUID MECHANICS
HYDRODYNAMICS
INSTABILITY
ITER TOKAMAK
JET TOKAMAK
MAGNETOHYDRODYNAMICS
MECHANICS
NONLINEAR PROBLEMS
PLASMA
PLASMA INSTABILITY
PLASMA SIMULATION
SIMULATION
THERMONUCLEAR DEVICES
THERMONUCLEAR REACTORS
TOKAMAK DEVICES
TOKAMAK TYPE REACTORS
WALL EFFECTS
title Wall forces produced during ITER disruptions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wall%20forces%20produced%20during%20ITER%20disruptions&rft.jtitle=Physics%20of%20plasmas&rft.au=Strauss,%20H.%20R.&rft.date=2010-08-01&rft.volume=17&rft.issue=8&rft.spage=082505&rft.epage=082505-9&rft.pages=082505-082505-9&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.3474922&rft_dat=%3Cscitation_osti_%3Epop%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true