Microangiography in Living Mice Using Synchrotron Radiation

Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2010-01, Vol.1266 (1), p.68-71
Hauptverfasser: Yuan, Falei, Wang, Yongting, Guan, Yongjing, Lu, Haiyan, Xie, Bohua, Tang, Yaohui, Xie, Honglan, Du, Guohao, Xiao, Tiqiao, Yang, Guo-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue 1
container_start_page 68
container_title AIP conference proceedings
container_volume 1266
creator Yuan, Falei
Wang, Yongting
Guan, Yongjing
Lu, Haiyan
Xie, Bohua
Tang, Yaohui
Xie, Honglan
Du, Guohao
Xiao, Tiqiao
Yang, Guo-Yuan
description Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-I mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 mu m/pixel. The optimal dose of contrast agent is 100 ul per injection and the injecting rate is 33 mu l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43 plus or minus 6.8 um. There were no differences between LSAs from the left and right hemisphere (p
doi_str_mv 10.1063/1.3478201
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21415287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>787074413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-3478874d78a2ece076519d8cfdc04e4bc029c21fdc498aa647e962ad988d77d13</originalsourceid><addsrcrecordid>eNotjk1LAzEYhIMfYK09-A8WPHjamjfJ7pvgSUr9gIqgFrwtMUl3IzWpm1Tov3dLPc0M8zAMIZdAp0BrfgNTLlAyCkdkBFUFJdZQH5OJQkmRV4JK4NUJGVGqRMkE_zgj5yl9UcoUohyR22dv-qhD62Pb6023K3woFv7Xh7YYKlcs096-7YLp-pj7GIpXbb3OPoYLcrrS6-Qm_zomy_v5--yxXLw8PM3uFqXhDHK5PyhRWJSaOeMo1hUoK83KGiqc-DTDF8NgiEJJrWuBTtVMWyWlRbTAx-TqsBtT9k0yPjvTmRiCM7lhIKBiEgfq-kBt-vizdSk33z4Zt17r4OI2NSiRohDA-R8j8liW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787074413</pqid></control><display><type>article</type><title>Microangiography in Living Mice Using Synchrotron Radiation</title><source>AIP Journals Complete</source><creator>Yuan, Falei ; Wang, Yongting ; Guan, Yongjing ; Lu, Haiyan ; Xie, Bohua ; Tang, Yaohui ; Xie, Honglan ; Du, Guohao ; Xiao, Tiqiao ; Yang, Guo-Yuan</creator><contributor>Sio, Karen KW</contributor><creatorcontrib>Yuan, Falei ; Wang, Yongting ; Guan, Yongjing ; Lu, Haiyan ; Xie, Bohua ; Tang, Yaohui ; Xie, Honglan ; Du, Guohao ; Xiao, Tiqiao ; Yang, Guo-Yuan ; Sio, Karen KW</creatorcontrib><description>Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-I mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 mu m/pixel. The optimal dose of contrast agent is 100 ul per injection and the injecting rate is 33 mu l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43 plus or minus 6.8 um. There were no differences between LSAs from the left and right hemisphere (p&lt;0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735408135</identifier><identifier>ISBN: 0735408130</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.3478201</identifier><language>eng</language><publisher>United States</publisher><subject>Adults ; ANIMALS ; ARTERIES ; BEAM CURRENTS ; Beams (radiation) ; BIOLOGICAL EFFECTS ; BIOLOGICAL RADIATION EFFECTS ; BLOOD VESSELS ; BODY ; BREMSSTRAHLUNG ; Cadmium ; Cameras ; CARDIOVASCULAR SYSTEM ; CEREBRAL ARTERIES ; CHARGE-COUPLED DEVICES ; Contrast agents ; CONTRAST MEDIA ; CURRENTS ; DIAGNOSTIC TECHNIQUES ; Dosage ; DOSES ; ELECTROMAGNETIC RADIATION ; ELEMENTS ; ENERGY RANGE ; Energy storage ; Energy use ; GEV RANGE ; GEV RANGE 01-10 ; HALOGENS ; Hemispheres ; Image contrast ; IMAGE PROCESSING ; Imaging ; IODINE ; IONIZING RADIATIONS ; KEV RANGE ; KEV RANGE 10-100 ; MAMMALS ; MICE ; Micrometers ; MORPHOLOGY ; Nonionic ; NONMETALS ; Optimization ; ORGANS ; Pixels ; PROCESSING ; RADIATION DOSES ; RADIATION EFFECTS ; RADIATION SOURCES ; RADIATIONS ; RADIOLOGY AND NUCLEAR MEDICINE ; RATS ; RESOLUTION ; RODENTS ; Roots ; SEMICONDUCTOR DEVICES ; SYNCHROTRON RADIATION ; SYNCHROTRON RADIATION SOURCES ; TOMOGRAPHY ; VERTEBRATES ; Weighing ; X RADIATION ; X-RAY SOURCES ; X-rays</subject><ispartof>AIP conference proceedings, 2010-01, Vol.1266 (1), p.68-71</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-3478874d78a2ece076519d8cfdc04e4bc029c21fdc498aa647e962ad988d77d13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21415287$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Sio, Karen KW</contributor><creatorcontrib>Yuan, Falei</creatorcontrib><creatorcontrib>Wang, Yongting</creatorcontrib><creatorcontrib>Guan, Yongjing</creatorcontrib><creatorcontrib>Lu, Haiyan</creatorcontrib><creatorcontrib>Xie, Bohua</creatorcontrib><creatorcontrib>Tang, Yaohui</creatorcontrib><creatorcontrib>Xie, Honglan</creatorcontrib><creatorcontrib>Du, Guohao</creatorcontrib><creatorcontrib>Xiao, Tiqiao</creatorcontrib><creatorcontrib>Yang, Guo-Yuan</creatorcontrib><title>Microangiography in Living Mice Using Synchrotron Radiation</title><title>AIP conference proceedings</title><description>Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-I mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 mu m/pixel. The optimal dose of contrast agent is 100 ul per injection and the injecting rate is 33 mu l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43 plus or minus 6.8 um. There were no differences between LSAs from the left and right hemisphere (p&lt;0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.</description><subject>Adults</subject><subject>ANIMALS</subject><subject>ARTERIES</subject><subject>BEAM CURRENTS</subject><subject>Beams (radiation)</subject><subject>BIOLOGICAL EFFECTS</subject><subject>BIOLOGICAL RADIATION EFFECTS</subject><subject>BLOOD VESSELS</subject><subject>BODY</subject><subject>BREMSSTRAHLUNG</subject><subject>Cadmium</subject><subject>Cameras</subject><subject>CARDIOVASCULAR SYSTEM</subject><subject>CEREBRAL ARTERIES</subject><subject>CHARGE-COUPLED DEVICES</subject><subject>Contrast agents</subject><subject>CONTRAST MEDIA</subject><subject>CURRENTS</subject><subject>DIAGNOSTIC TECHNIQUES</subject><subject>Dosage</subject><subject>DOSES</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELEMENTS</subject><subject>ENERGY RANGE</subject><subject>Energy storage</subject><subject>Energy use</subject><subject>GEV RANGE</subject><subject>GEV RANGE 01-10</subject><subject>HALOGENS</subject><subject>Hemispheres</subject><subject>Image contrast</subject><subject>IMAGE PROCESSING</subject><subject>Imaging</subject><subject>IODINE</subject><subject>IONIZING RADIATIONS</subject><subject>KEV RANGE</subject><subject>KEV RANGE 10-100</subject><subject>MAMMALS</subject><subject>MICE</subject><subject>Micrometers</subject><subject>MORPHOLOGY</subject><subject>Nonionic</subject><subject>NONMETALS</subject><subject>Optimization</subject><subject>ORGANS</subject><subject>Pixels</subject><subject>PROCESSING</subject><subject>RADIATION DOSES</subject><subject>RADIATION EFFECTS</subject><subject>RADIATION SOURCES</subject><subject>RADIATIONS</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>RATS</subject><subject>RESOLUTION</subject><subject>RODENTS</subject><subject>Roots</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SYNCHROTRON RADIATION</subject><subject>SYNCHROTRON RADIATION SOURCES</subject><subject>TOMOGRAPHY</subject><subject>VERTEBRATES</subject><subject>Weighing</subject><subject>X RADIATION</subject><subject>X-RAY SOURCES</subject><subject>X-rays</subject><issn>0094-243X</issn><issn>1551-7616</issn><isbn>9780735408135</isbn><isbn>0735408130</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotjk1LAzEYhIMfYK09-A8WPHjamjfJ7pvgSUr9gIqgFrwtMUl3IzWpm1Tov3dLPc0M8zAMIZdAp0BrfgNTLlAyCkdkBFUFJdZQH5OJQkmRV4JK4NUJGVGqRMkE_zgj5yl9UcoUohyR22dv-qhD62Pb6023K3woFv7Xh7YYKlcs096-7YLp-pj7GIpXbb3OPoYLcrrS6-Qm_zomy_v5--yxXLw8PM3uFqXhDHK5PyhRWJSaOeMo1hUoK83KGiqc-DTDF8NgiEJJrWuBTtVMWyWlRbTAx-TqsBtT9k0yPjvTmRiCM7lhIKBiEgfq-kBt-vizdSk33z4Zt17r4OI2NSiRohDA-R8j8liW</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Yuan, Falei</creator><creator>Wang, Yongting</creator><creator>Guan, Yongjing</creator><creator>Lu, Haiyan</creator><creator>Xie, Bohua</creator><creator>Tang, Yaohui</creator><creator>Xie, Honglan</creator><creator>Du, Guohao</creator><creator>Xiao, Tiqiao</creator><creator>Yang, Guo-Yuan</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20100101</creationdate><title>Microangiography in Living Mice Using Synchrotron Radiation</title><author>Yuan, Falei ; Wang, Yongting ; Guan, Yongjing ; Lu, Haiyan ; Xie, Bohua ; Tang, Yaohui ; Xie, Honglan ; Du, Guohao ; Xiao, Tiqiao ; Yang, Guo-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-3478874d78a2ece076519d8cfdc04e4bc029c21fdc498aa647e962ad988d77d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adults</topic><topic>ANIMALS</topic><topic>ARTERIES</topic><topic>BEAM CURRENTS</topic><topic>Beams (radiation)</topic><topic>BIOLOGICAL EFFECTS</topic><topic>BIOLOGICAL RADIATION EFFECTS</topic><topic>BLOOD VESSELS</topic><topic>BODY</topic><topic>BREMSSTRAHLUNG</topic><topic>Cadmium</topic><topic>Cameras</topic><topic>CARDIOVASCULAR SYSTEM</topic><topic>CEREBRAL ARTERIES</topic><topic>CHARGE-COUPLED DEVICES</topic><topic>Contrast agents</topic><topic>CONTRAST MEDIA</topic><topic>CURRENTS</topic><topic>DIAGNOSTIC TECHNIQUES</topic><topic>Dosage</topic><topic>DOSES</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELEMENTS</topic><topic>ENERGY RANGE</topic><topic>Energy storage</topic><topic>Energy use</topic><topic>GEV RANGE</topic><topic>GEV RANGE 01-10</topic><topic>HALOGENS</topic><topic>Hemispheres</topic><topic>Image contrast</topic><topic>IMAGE PROCESSING</topic><topic>Imaging</topic><topic>IODINE</topic><topic>IONIZING RADIATIONS</topic><topic>KEV RANGE</topic><topic>KEV RANGE 10-100</topic><topic>MAMMALS</topic><topic>MICE</topic><topic>Micrometers</topic><topic>MORPHOLOGY</topic><topic>Nonionic</topic><topic>NONMETALS</topic><topic>Optimization</topic><topic>ORGANS</topic><topic>Pixels</topic><topic>PROCESSING</topic><topic>RADIATION DOSES</topic><topic>RADIATION EFFECTS</topic><topic>RADIATION SOURCES</topic><topic>RADIATIONS</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>RATS</topic><topic>RESOLUTION</topic><topic>RODENTS</topic><topic>Roots</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SYNCHROTRON RADIATION</topic><topic>SYNCHROTRON RADIATION SOURCES</topic><topic>TOMOGRAPHY</topic><topic>VERTEBRATES</topic><topic>Weighing</topic><topic>X RADIATION</topic><topic>X-RAY SOURCES</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Falei</creatorcontrib><creatorcontrib>Wang, Yongting</creatorcontrib><creatorcontrib>Guan, Yongjing</creatorcontrib><creatorcontrib>Lu, Haiyan</creatorcontrib><creatorcontrib>Xie, Bohua</creatorcontrib><creatorcontrib>Tang, Yaohui</creatorcontrib><creatorcontrib>Xie, Honglan</creatorcontrib><creatorcontrib>Du, Guohao</creatorcontrib><creatorcontrib>Xiao, Tiqiao</creatorcontrib><creatorcontrib>Yang, Guo-Yuan</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Falei</au><au>Wang, Yongting</au><au>Guan, Yongjing</au><au>Lu, Haiyan</au><au>Xie, Bohua</au><au>Tang, Yaohui</au><au>Xie, Honglan</au><au>Du, Guohao</au><au>Xiao, Tiqiao</au><au>Yang, Guo-Yuan</au><au>Sio, Karen KW</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microangiography in Living Mice Using Synchrotron Radiation</atitle><jtitle>AIP conference proceedings</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>1266</volume><issue>1</issue><spage>68</spage><epage>71</epage><pages>68-71</pages><issn>0094-243X</issn><eissn>1551-7616</eissn><isbn>9780735408135</isbn><isbn>0735408130</isbn><abstract>Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-I mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 mu m/pixel. The optimal dose of contrast agent is 100 ul per injection and the injecting rate is 33 mu l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43 plus or minus 6.8 um. There were no differences between LSAs from the left and right hemisphere (p&lt;0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.</abstract><cop>United States</cop><doi>10.1063/1.3478201</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2010-01, Vol.1266 (1), p.68-71
issn 0094-243X
1551-7616
language eng
recordid cdi_osti_scitechconnect_21415287
source AIP Journals Complete
subjects Adults
ANIMALS
ARTERIES
BEAM CURRENTS
Beams (radiation)
BIOLOGICAL EFFECTS
BIOLOGICAL RADIATION EFFECTS
BLOOD VESSELS
BODY
BREMSSTRAHLUNG
Cadmium
Cameras
CARDIOVASCULAR SYSTEM
CEREBRAL ARTERIES
CHARGE-COUPLED DEVICES
Contrast agents
CONTRAST MEDIA
CURRENTS
DIAGNOSTIC TECHNIQUES
Dosage
DOSES
ELECTROMAGNETIC RADIATION
ELEMENTS
ENERGY RANGE
Energy storage
Energy use
GEV RANGE
GEV RANGE 01-10
HALOGENS
Hemispheres
Image contrast
IMAGE PROCESSING
Imaging
IODINE
IONIZING RADIATIONS
KEV RANGE
KEV RANGE 10-100
MAMMALS
MICE
Micrometers
MORPHOLOGY
Nonionic
NONMETALS
Optimization
ORGANS
Pixels
PROCESSING
RADIATION DOSES
RADIATION EFFECTS
RADIATION SOURCES
RADIATIONS
RADIOLOGY AND NUCLEAR MEDICINE
RATS
RESOLUTION
RODENTS
Roots
SEMICONDUCTOR DEVICES
SYNCHROTRON RADIATION
SYNCHROTRON RADIATION SOURCES
TOMOGRAPHY
VERTEBRATES
Weighing
X RADIATION
X-RAY SOURCES
X-rays
title Microangiography in Living Mice Using Synchrotron Radiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microangiography%20in%20Living%20Mice%20Using%20Synchrotron%20Radiation&rft.jtitle=AIP%20conference%20proceedings&rft.au=Yuan,%20Falei&rft.date=2010-01-01&rft.volume=1266&rft.issue=1&rft.spage=68&rft.epage=71&rft.pages=68-71&rft.issn=0094-243X&rft.eissn=1551-7616&rft.isbn=9780735408135&rft.isbn_list=0735408130&rft_id=info:doi/10.1063/1.3478201&rft_dat=%3Cproquest_osti_%3E787074413%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787074413&rft_id=info:pmid/&rfr_iscdi=true