Microangiography in Living Mice Using Synchrotron Radiation
Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful to...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2010-01, Vol.1266 (1), p.68-71 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | 1 |
container_start_page | 68 |
container_title | AIP conference proceedings |
container_volume | 1266 |
creator | Yuan, Falei Wang, Yongting Guan, Yongjing Lu, Haiyan Xie, Bohua Tang, Yaohui Xie, Honglan Du, Guohao Xiao, Tiqiao Yang, Guo-Yuan |
description | Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-I mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 mu m/pixel. The optimal dose of contrast agent is 100 ul per injection and the injecting rate is 33 mu l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43 plus or minus 6.8 um. There were no differences between LSAs from the left and right hemisphere (p |
doi_str_mv | 10.1063/1.3478201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21415287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>787074413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-3478874d78a2ece076519d8cfdc04e4bc029c21fdc498aa647e962ad988d77d13</originalsourceid><addsrcrecordid>eNotjk1LAzEYhIMfYK09-A8WPHjamjfJ7pvgSUr9gIqgFrwtMUl3IzWpm1Tov3dLPc0M8zAMIZdAp0BrfgNTLlAyCkdkBFUFJdZQH5OJQkmRV4JK4NUJGVGqRMkE_zgj5yl9UcoUohyR22dv-qhD62Pb6023K3woFv7Xh7YYKlcs096-7YLp-pj7GIpXbb3OPoYLcrrS6-Qm_zomy_v5--yxXLw8PM3uFqXhDHK5PyhRWJSaOeMo1hUoK83KGiqc-DTDF8NgiEJJrWuBTtVMWyWlRbTAx-TqsBtT9k0yPjvTmRiCM7lhIKBiEgfq-kBt-vizdSk33z4Zt17r4OI2NSiRohDA-R8j8liW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787074413</pqid></control><display><type>article</type><title>Microangiography in Living Mice Using Synchrotron Radiation</title><source>AIP Journals Complete</source><creator>Yuan, Falei ; Wang, Yongting ; Guan, Yongjing ; Lu, Haiyan ; Xie, Bohua ; Tang, Yaohui ; Xie, Honglan ; Du, Guohao ; Xiao, Tiqiao ; Yang, Guo-Yuan</creator><contributor>Sio, Karen KW</contributor><creatorcontrib>Yuan, Falei ; Wang, Yongting ; Guan, Yongjing ; Lu, Haiyan ; Xie, Bohua ; Tang, Yaohui ; Xie, Honglan ; Du, Guohao ; Xiao, Tiqiao ; Yang, Guo-Yuan ; Sio, Karen KW</creatorcontrib><description>Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-I mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 mu m/pixel. The optimal dose of contrast agent is 100 ul per injection and the injecting rate is 33 mu l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43 plus or minus 6.8 um. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.</description><identifier>ISSN: 0094-243X</identifier><identifier>ISBN: 9780735408135</identifier><identifier>ISBN: 0735408130</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.3478201</identifier><language>eng</language><publisher>United States</publisher><subject>Adults ; ANIMALS ; ARTERIES ; BEAM CURRENTS ; Beams (radiation) ; BIOLOGICAL EFFECTS ; BIOLOGICAL RADIATION EFFECTS ; BLOOD VESSELS ; BODY ; BREMSSTRAHLUNG ; Cadmium ; Cameras ; CARDIOVASCULAR SYSTEM ; CEREBRAL ARTERIES ; CHARGE-COUPLED DEVICES ; Contrast agents ; CONTRAST MEDIA ; CURRENTS ; DIAGNOSTIC TECHNIQUES ; Dosage ; DOSES ; ELECTROMAGNETIC RADIATION ; ELEMENTS ; ENERGY RANGE ; Energy storage ; Energy use ; GEV RANGE ; GEV RANGE 01-10 ; HALOGENS ; Hemispheres ; Image contrast ; IMAGE PROCESSING ; Imaging ; IODINE ; IONIZING RADIATIONS ; KEV RANGE ; KEV RANGE 10-100 ; MAMMALS ; MICE ; Micrometers ; MORPHOLOGY ; Nonionic ; NONMETALS ; Optimization ; ORGANS ; Pixels ; PROCESSING ; RADIATION DOSES ; RADIATION EFFECTS ; RADIATION SOURCES ; RADIATIONS ; RADIOLOGY AND NUCLEAR MEDICINE ; RATS ; RESOLUTION ; RODENTS ; Roots ; SEMICONDUCTOR DEVICES ; SYNCHROTRON RADIATION ; SYNCHROTRON RADIATION SOURCES ; TOMOGRAPHY ; VERTEBRATES ; Weighing ; X RADIATION ; X-RAY SOURCES ; X-rays</subject><ispartof>AIP conference proceedings, 2010-01, Vol.1266 (1), p.68-71</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-3478874d78a2ece076519d8cfdc04e4bc029c21fdc498aa647e962ad988d77d13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21415287$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Sio, Karen KW</contributor><creatorcontrib>Yuan, Falei</creatorcontrib><creatorcontrib>Wang, Yongting</creatorcontrib><creatorcontrib>Guan, Yongjing</creatorcontrib><creatorcontrib>Lu, Haiyan</creatorcontrib><creatorcontrib>Xie, Bohua</creatorcontrib><creatorcontrib>Tang, Yaohui</creatorcontrib><creatorcontrib>Xie, Honglan</creatorcontrib><creatorcontrib>Du, Guohao</creatorcontrib><creatorcontrib>Xiao, Tiqiao</creatorcontrib><creatorcontrib>Yang, Guo-Yuan</creatorcontrib><title>Microangiography in Living Mice Using Synchrotron Radiation</title><title>AIP conference proceedings</title><description>Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-I mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 mu m/pixel. The optimal dose of contrast agent is 100 ul per injection and the injecting rate is 33 mu l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43 plus or minus 6.8 um. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.</description><subject>Adults</subject><subject>ANIMALS</subject><subject>ARTERIES</subject><subject>BEAM CURRENTS</subject><subject>Beams (radiation)</subject><subject>BIOLOGICAL EFFECTS</subject><subject>BIOLOGICAL RADIATION EFFECTS</subject><subject>BLOOD VESSELS</subject><subject>BODY</subject><subject>BREMSSTRAHLUNG</subject><subject>Cadmium</subject><subject>Cameras</subject><subject>CARDIOVASCULAR SYSTEM</subject><subject>CEREBRAL ARTERIES</subject><subject>CHARGE-COUPLED DEVICES</subject><subject>Contrast agents</subject><subject>CONTRAST MEDIA</subject><subject>CURRENTS</subject><subject>DIAGNOSTIC TECHNIQUES</subject><subject>Dosage</subject><subject>DOSES</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELEMENTS</subject><subject>ENERGY RANGE</subject><subject>Energy storage</subject><subject>Energy use</subject><subject>GEV RANGE</subject><subject>GEV RANGE 01-10</subject><subject>HALOGENS</subject><subject>Hemispheres</subject><subject>Image contrast</subject><subject>IMAGE PROCESSING</subject><subject>Imaging</subject><subject>IODINE</subject><subject>IONIZING RADIATIONS</subject><subject>KEV RANGE</subject><subject>KEV RANGE 10-100</subject><subject>MAMMALS</subject><subject>MICE</subject><subject>Micrometers</subject><subject>MORPHOLOGY</subject><subject>Nonionic</subject><subject>NONMETALS</subject><subject>Optimization</subject><subject>ORGANS</subject><subject>Pixels</subject><subject>PROCESSING</subject><subject>RADIATION DOSES</subject><subject>RADIATION EFFECTS</subject><subject>RADIATION SOURCES</subject><subject>RADIATIONS</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>RATS</subject><subject>RESOLUTION</subject><subject>RODENTS</subject><subject>Roots</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SYNCHROTRON RADIATION</subject><subject>SYNCHROTRON RADIATION SOURCES</subject><subject>TOMOGRAPHY</subject><subject>VERTEBRATES</subject><subject>Weighing</subject><subject>X RADIATION</subject><subject>X-RAY SOURCES</subject><subject>X-rays</subject><issn>0094-243X</issn><issn>1551-7616</issn><isbn>9780735408135</isbn><isbn>0735408130</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotjk1LAzEYhIMfYK09-A8WPHjamjfJ7pvgSUr9gIqgFrwtMUl3IzWpm1Tov3dLPc0M8zAMIZdAp0BrfgNTLlAyCkdkBFUFJdZQH5OJQkmRV4JK4NUJGVGqRMkE_zgj5yl9UcoUohyR22dv-qhD62Pb6023K3woFv7Xh7YYKlcs096-7YLp-pj7GIpXbb3OPoYLcrrS6-Qm_zomy_v5--yxXLw8PM3uFqXhDHK5PyhRWJSaOeMo1hUoK83KGiqc-DTDF8NgiEJJrWuBTtVMWyWlRbTAx-TqsBtT9k0yPjvTmRiCM7lhIKBiEgfq-kBt-vizdSk33z4Zt17r4OI2NSiRohDA-R8j8liW</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Yuan, Falei</creator><creator>Wang, Yongting</creator><creator>Guan, Yongjing</creator><creator>Lu, Haiyan</creator><creator>Xie, Bohua</creator><creator>Tang, Yaohui</creator><creator>Xie, Honglan</creator><creator>Du, Guohao</creator><creator>Xiao, Tiqiao</creator><creator>Yang, Guo-Yuan</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20100101</creationdate><title>Microangiography in Living Mice Using Synchrotron Radiation</title><author>Yuan, Falei ; Wang, Yongting ; Guan, Yongjing ; Lu, Haiyan ; Xie, Bohua ; Tang, Yaohui ; Xie, Honglan ; Du, Guohao ; Xiao, Tiqiao ; Yang, Guo-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-3478874d78a2ece076519d8cfdc04e4bc029c21fdc498aa647e962ad988d77d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adults</topic><topic>ANIMALS</topic><topic>ARTERIES</topic><topic>BEAM CURRENTS</topic><topic>Beams (radiation)</topic><topic>BIOLOGICAL EFFECTS</topic><topic>BIOLOGICAL RADIATION EFFECTS</topic><topic>BLOOD VESSELS</topic><topic>BODY</topic><topic>BREMSSTRAHLUNG</topic><topic>Cadmium</topic><topic>Cameras</topic><topic>CARDIOVASCULAR SYSTEM</topic><topic>CEREBRAL ARTERIES</topic><topic>CHARGE-COUPLED DEVICES</topic><topic>Contrast agents</topic><topic>CONTRAST MEDIA</topic><topic>CURRENTS</topic><topic>DIAGNOSTIC TECHNIQUES</topic><topic>Dosage</topic><topic>DOSES</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELEMENTS</topic><topic>ENERGY RANGE</topic><topic>Energy storage</topic><topic>Energy use</topic><topic>GEV RANGE</topic><topic>GEV RANGE 01-10</topic><topic>HALOGENS</topic><topic>Hemispheres</topic><topic>Image contrast</topic><topic>IMAGE PROCESSING</topic><topic>Imaging</topic><topic>IODINE</topic><topic>IONIZING RADIATIONS</topic><topic>KEV RANGE</topic><topic>KEV RANGE 10-100</topic><topic>MAMMALS</topic><topic>MICE</topic><topic>Micrometers</topic><topic>MORPHOLOGY</topic><topic>Nonionic</topic><topic>NONMETALS</topic><topic>Optimization</topic><topic>ORGANS</topic><topic>Pixels</topic><topic>PROCESSING</topic><topic>RADIATION DOSES</topic><topic>RADIATION EFFECTS</topic><topic>RADIATION SOURCES</topic><topic>RADIATIONS</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>RATS</topic><topic>RESOLUTION</topic><topic>RODENTS</topic><topic>Roots</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SYNCHROTRON RADIATION</topic><topic>SYNCHROTRON RADIATION SOURCES</topic><topic>TOMOGRAPHY</topic><topic>VERTEBRATES</topic><topic>Weighing</topic><topic>X RADIATION</topic><topic>X-RAY SOURCES</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Falei</creatorcontrib><creatorcontrib>Wang, Yongting</creatorcontrib><creatorcontrib>Guan, Yongjing</creatorcontrib><creatorcontrib>Lu, Haiyan</creatorcontrib><creatorcontrib>Xie, Bohua</creatorcontrib><creatorcontrib>Tang, Yaohui</creatorcontrib><creatorcontrib>Xie, Honglan</creatorcontrib><creatorcontrib>Du, Guohao</creatorcontrib><creatorcontrib>Xiao, Tiqiao</creatorcontrib><creatorcontrib>Yang, Guo-Yuan</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Falei</au><au>Wang, Yongting</au><au>Guan, Yongjing</au><au>Lu, Haiyan</au><au>Xie, Bohua</au><au>Tang, Yaohui</au><au>Xie, Honglan</au><au>Du, Guohao</au><au>Xiao, Tiqiao</au><au>Yang, Guo-Yuan</au><au>Sio, Karen KW</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microangiography in Living Mice Using Synchrotron Radiation</atitle><jtitle>AIP conference proceedings</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>1266</volume><issue>1</issue><spage>68</spage><epage>71</epage><pages>68-71</pages><issn>0094-243X</issn><eissn>1551-7616</eissn><isbn>9780735408135</isbn><isbn>0735408130</isbn><abstract>Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-I mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 mu m/pixel. The optimal dose of contrast agent is 100 ul per injection and the injecting rate is 33 mu l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43 plus or minus 6.8 um. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.</abstract><cop>United States</cop><doi>10.1063/1.3478201</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2010-01, Vol.1266 (1), p.68-71 |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_osti_scitechconnect_21415287 |
source | AIP Journals Complete |
subjects | Adults ANIMALS ARTERIES BEAM CURRENTS Beams (radiation) BIOLOGICAL EFFECTS BIOLOGICAL RADIATION EFFECTS BLOOD VESSELS BODY BREMSSTRAHLUNG Cadmium Cameras CARDIOVASCULAR SYSTEM CEREBRAL ARTERIES CHARGE-COUPLED DEVICES Contrast agents CONTRAST MEDIA CURRENTS DIAGNOSTIC TECHNIQUES Dosage DOSES ELECTROMAGNETIC RADIATION ELEMENTS ENERGY RANGE Energy storage Energy use GEV RANGE GEV RANGE 01-10 HALOGENS Hemispheres Image contrast IMAGE PROCESSING Imaging IODINE IONIZING RADIATIONS KEV RANGE KEV RANGE 10-100 MAMMALS MICE Micrometers MORPHOLOGY Nonionic NONMETALS Optimization ORGANS Pixels PROCESSING RADIATION DOSES RADIATION EFFECTS RADIATION SOURCES RADIATIONS RADIOLOGY AND NUCLEAR MEDICINE RATS RESOLUTION RODENTS Roots SEMICONDUCTOR DEVICES SYNCHROTRON RADIATION SYNCHROTRON RADIATION SOURCES TOMOGRAPHY VERTEBRATES Weighing X RADIATION X-RAY SOURCES X-rays |
title | Microangiography in Living Mice Using Synchrotron Radiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microangiography%20in%20Living%20Mice%20Using%20Synchrotron%20Radiation&rft.jtitle=AIP%20conference%20proceedings&rft.au=Yuan,%20Falei&rft.date=2010-01-01&rft.volume=1266&rft.issue=1&rft.spage=68&rft.epage=71&rft.pages=68-71&rft.issn=0094-243X&rft.eissn=1551-7616&rft.isbn=9780735408135&rft.isbn_list=0735408130&rft_id=info:doi/10.1063/1.3478201&rft_dat=%3Cproquest_osti_%3E787074413%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787074413&rft_id=info:pmid/&rfr_iscdi=true |