Casimir force at a knife’s edge

The Casimir force has been computed exactly for only a few simple geometries, such as infinite plates, cylinders, and spheres. We show that a parabolic cylinder, for which analytic solutions to the Helmholtz equation are available, is another case where such a calculation is possible. We compute the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2010-03, Vol.81 (6), Article 061701
Hauptverfasser: Graham, Noah, Shpunt, Alexander, Emig, Thorsten, Rahi, Sahand Jamal, Jaffe, Robert L., Kardar, Mehran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Casimir force has been computed exactly for only a few simple geometries, such as infinite plates, cylinders, and spheres. We show that a parabolic cylinder, for which analytic solutions to the Helmholtz equation are available, is another case where such a calculation is possible. We compute the interaction energy of a parabolic cylinder and an infinite plate (both perfect mirrors), as a function of their separation and inclination, $H$ and $\theta$, and the cylinder's parabolic radius $R$. As $H/R\to 0$, the proximity force approximation becomes exact. The opposite limit of $R/H\to 0$ corresponds to a semi-infinite plate, where the effects of edge and inclination can be probed.
ISSN:1550-7998
2470-0010
0556-2821
1550-2368
2470-0029
1089-4918
DOI:10.1103/PhysRevD.81.061701