Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap
We demonstrate quantum control techniques for a single trapped ion in a cryogenic, surface-electrode trap. A narrow optical transition of Sr{sup +} along with the ground and first excited motional states of the harmonic trapping potential form a two-qubit system. The optical qubit transition is susc...
Gespeichert in:
Veröffentlicht in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2010-06, Vol.81 (6), Article 062332 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physical review. A, Atomic, molecular, and optical physics |
container_volume | 81 |
creator | Wang, Shannon X. Labaziewicz, Jaroslaw Ge, Yufei Shewmon, Ruth Chuang, Isaac L. |
description | We demonstrate quantum control techniques for a single trapped ion in a cryogenic, surface-electrode trap. A narrow optical transition of Sr{sup +} along with the ground and first excited motional states of the harmonic trapping potential form a two-qubit system. The optical qubit transition is susceptible to magnetic field fluctuations, which we stabilize with a simple and compact method using superconducting rings. Decoherence of the motional qubit is suppressed by the cryogenic environment. ac Stark shift correction is accomplished by controlling the laser phase in the pulse sequencer, eliminating the need for an additional laser. Quantum process tomography is implemented on atomic and motional states by use of conditional pulse sequences. With these techniques, we demonstrate a Cirac-Zoller controlled-not gate in a single ion with a mean fidelity of 91(1)%. |
doi_str_mv | 10.1103/PhysRevA.81.062332 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21407925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_81_062332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-1982c452f36d7929173f7daaf8a3283b8d1f5e07b4f3f28efd465fede61e47cf3</originalsourceid><addsrcrecordid>eNo1kE9LAzEQxYMoWKtfwNOC562ZJLubPZb6FwoV0XNIs5N2pU1qkhX225tSncsMjzc_Ho-QW6AzAMrv37ZjfMef-UzCjNaMc3ZGJkBbUULN2PnxrmjJWtFckqsYv2geIdsJWT3g3ruYgk69d4W3hS6-B-3SsC92ftObYqMTFr3Lugmj36DLWhyC1QZL3KFJwXfZkJ8z5HBNLqzeRbz521Py-fT4sXgpl6vn18V8WRpey1RCK5kRFbO87pqWtdBw23RaW6k5k3wtO7AV0mYtLLdMou1EXVnssAYUjbF8Su5OXB9Tr6LpE5qt8c7lQIqBoJlaZRc7uUzwMQa06hD6vQ6jAqqOxan_4pQEdSqO_wIHe2N4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap</title><source>American Physical Society Journals</source><creator>Wang, Shannon X. ; Labaziewicz, Jaroslaw ; Ge, Yufei ; Shewmon, Ruth ; Chuang, Isaac L.</creator><creatorcontrib>Wang, Shannon X. ; Labaziewicz, Jaroslaw ; Ge, Yufei ; Shewmon, Ruth ; Chuang, Isaac L.</creatorcontrib><description>We demonstrate quantum control techniques for a single trapped ion in a cryogenic, surface-electrode trap. A narrow optical transition of Sr{sup +} along with the ground and first excited motional states of the harmonic trapping potential form a two-qubit system. The optical qubit transition is susceptible to magnetic field fluctuations, which we stabilize with a simple and compact method using superconducting rings. Decoherence of the motional qubit is suppressed by the cryogenic environment. ac Stark shift correction is accomplished by controlling the laser phase in the pulse sequencer, eliminating the need for an additional laser. Quantum process tomography is implemented on atomic and motional states by use of conditional pulse sequences. With these techniques, we demonstrate a Cirac-Zoller controlled-not gate in a single ion with a mean fidelity of 91(1)%.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.81.062332</identifier><language>eng</language><publisher>United States</publisher><subject>CHARGED PARTICLES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONTROL ; DIAGNOSTIC TECHNIQUES ; ELECTRODES ; FLUCTUATIONS ; IONS ; LASERS ; MAGNETIC FIELDS ; POTENTIALS ; PULSES ; SURFACES ; TOMOGRAPHY ; TRAPPING ; TRAPS ; VARIATIONS</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2010-06, Vol.81 (6), Article 062332</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-1982c452f36d7929173f7daaf8a3283b8d1f5e07b4f3f28efd465fede61e47cf3</citedby><cites>FETCH-LOGICAL-c368t-1982c452f36d7929173f7daaf8a3283b8d1f5e07b4f3f28efd465fede61e47cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21407925$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shannon X.</creatorcontrib><creatorcontrib>Labaziewicz, Jaroslaw</creatorcontrib><creatorcontrib>Ge, Yufei</creatorcontrib><creatorcontrib>Shewmon, Ruth</creatorcontrib><creatorcontrib>Chuang, Isaac L.</creatorcontrib><title>Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>We demonstrate quantum control techniques for a single trapped ion in a cryogenic, surface-electrode trap. A narrow optical transition of Sr{sup +} along with the ground and first excited motional states of the harmonic trapping potential form a two-qubit system. The optical qubit transition is susceptible to magnetic field fluctuations, which we stabilize with a simple and compact method using superconducting rings. Decoherence of the motional qubit is suppressed by the cryogenic environment. ac Stark shift correction is accomplished by controlling the laser phase in the pulse sequencer, eliminating the need for an additional laser. Quantum process tomography is implemented on atomic and motional states by use of conditional pulse sequences. With these techniques, we demonstrate a Cirac-Zoller controlled-not gate in a single ion with a mean fidelity of 91(1)%.</description><subject>CHARGED PARTICLES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONTROL</subject><subject>DIAGNOSTIC TECHNIQUES</subject><subject>ELECTRODES</subject><subject>FLUCTUATIONS</subject><subject>IONS</subject><subject>LASERS</subject><subject>MAGNETIC FIELDS</subject><subject>POTENTIALS</subject><subject>PULSES</subject><subject>SURFACES</subject><subject>TOMOGRAPHY</subject><subject>TRAPPING</subject><subject>TRAPS</subject><subject>VARIATIONS</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo1kE9LAzEQxYMoWKtfwNOC562ZJLubPZb6FwoV0XNIs5N2pU1qkhX225tSncsMjzc_Ho-QW6AzAMrv37ZjfMef-UzCjNaMc3ZGJkBbUULN2PnxrmjJWtFckqsYv2geIdsJWT3g3ruYgk69d4W3hS6-B-3SsC92ftObYqMTFr3Lugmj36DLWhyC1QZL3KFJwXfZkJ8z5HBNLqzeRbz521Py-fT4sXgpl6vn18V8WRpey1RCK5kRFbO87pqWtdBw23RaW6k5k3wtO7AV0mYtLLdMou1EXVnssAYUjbF8Su5OXB9Tr6LpE5qt8c7lQIqBoJlaZRc7uUzwMQa06hD6vQ6jAqqOxan_4pQEdSqO_wIHe2N4</recordid><startdate>20100624</startdate><enddate>20100624</enddate><creator>Wang, Shannon X.</creator><creator>Labaziewicz, Jaroslaw</creator><creator>Ge, Yufei</creator><creator>Shewmon, Ruth</creator><creator>Chuang, Isaac L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20100624</creationdate><title>Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap</title><author>Wang, Shannon X. ; Labaziewicz, Jaroslaw ; Ge, Yufei ; Shewmon, Ruth ; Chuang, Isaac L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-1982c452f36d7929173f7daaf8a3283b8d1f5e07b4f3f28efd465fede61e47cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>CHARGED PARTICLES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONTROL</topic><topic>DIAGNOSTIC TECHNIQUES</topic><topic>ELECTRODES</topic><topic>FLUCTUATIONS</topic><topic>IONS</topic><topic>LASERS</topic><topic>MAGNETIC FIELDS</topic><topic>POTENTIALS</topic><topic>PULSES</topic><topic>SURFACES</topic><topic>TOMOGRAPHY</topic><topic>TRAPPING</topic><topic>TRAPS</topic><topic>VARIATIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shannon X.</creatorcontrib><creatorcontrib>Labaziewicz, Jaroslaw</creatorcontrib><creatorcontrib>Ge, Yufei</creatorcontrib><creatorcontrib>Shewmon, Ruth</creatorcontrib><creatorcontrib>Chuang, Isaac L.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shannon X.</au><au>Labaziewicz, Jaroslaw</au><au>Ge, Yufei</au><au>Shewmon, Ruth</au><au>Chuang, Isaac L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2010-06-24</date><risdate>2010</risdate><volume>81</volume><issue>6</issue><artnum>062332</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>We demonstrate quantum control techniques for a single trapped ion in a cryogenic, surface-electrode trap. A narrow optical transition of Sr{sup +} along with the ground and first excited motional states of the harmonic trapping potential form a two-qubit system. The optical qubit transition is susceptible to magnetic field fluctuations, which we stabilize with a simple and compact method using superconducting rings. Decoherence of the motional qubit is suppressed by the cryogenic environment. ac Stark shift correction is accomplished by controlling the laser phase in the pulse sequencer, eliminating the need for an additional laser. Quantum process tomography is implemented on atomic and motional states by use of conditional pulse sequences. With these techniques, we demonstrate a Cirac-Zoller controlled-not gate in a single ion with a mean fidelity of 91(1)%.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.81.062332</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-2947 |
ispartof | Physical review. A, Atomic, molecular, and optical physics, 2010-06, Vol.81 (6), Article 062332 |
issn | 1050-2947 1094-1622 |
language | eng |
recordid | cdi_osti_scitechconnect_21407925 |
source | American Physical Society Journals |
subjects | CHARGED PARTICLES CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONTROL DIAGNOSTIC TECHNIQUES ELECTRODES FLUCTUATIONS IONS LASERS MAGNETIC FIELDS POTENTIALS PULSES SURFACES TOMOGRAPHY TRAPPING TRAPS VARIATIONS |
title | Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20a%20quantum%20logic%20gate%20in%20a%20cryogenic%20surface-electrode%20ion%20trap&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Wang,%20Shannon%20X.&rft.date=2010-06-24&rft.volume=81&rft.issue=6&rft.artnum=062332&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.81.062332&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_81_062332%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |