Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap

We demonstrate quantum control techniques for a single trapped ion in a cryogenic, surface-electrode trap. A narrow optical transition of Sr{sup +} along with the ground and first excited motional states of the harmonic trapping potential form a two-qubit system. The optical qubit transition is susc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2010-06, Vol.81 (6), Article 062332
Hauptverfasser: Wang, Shannon X., Labaziewicz, Jaroslaw, Ge, Yufei, Shewmon, Ruth, Chuang, Isaac L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 81
creator Wang, Shannon X.
Labaziewicz, Jaroslaw
Ge, Yufei
Shewmon, Ruth
Chuang, Isaac L.
description We demonstrate quantum control techniques for a single trapped ion in a cryogenic, surface-electrode trap. A narrow optical transition of Sr{sup +} along with the ground and first excited motional states of the harmonic trapping potential form a two-qubit system. The optical qubit transition is susceptible to magnetic field fluctuations, which we stabilize with a simple and compact method using superconducting rings. Decoherence of the motional qubit is suppressed by the cryogenic environment. ac Stark shift correction is accomplished by controlling the laser phase in the pulse sequencer, eliminating the need for an additional laser. Quantum process tomography is implemented on atomic and motional states by use of conditional pulse sequences. With these techniques, we demonstrate a Cirac-Zoller controlled-not gate in a single ion with a mean fidelity of 91(1)%.
doi_str_mv 10.1103/PhysRevA.81.062332
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21407925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_81_062332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-1982c452f36d7929173f7daaf8a3283b8d1f5e07b4f3f28efd465fede61e47cf3</originalsourceid><addsrcrecordid>eNo1kE9LAzEQxYMoWKtfwNOC562ZJLubPZb6FwoV0XNIs5N2pU1qkhX225tSncsMjzc_Ho-QW6AzAMrv37ZjfMef-UzCjNaMc3ZGJkBbUULN2PnxrmjJWtFckqsYv2geIdsJWT3g3ruYgk69d4W3hS6-B-3SsC92ftObYqMTFr3Lugmj36DLWhyC1QZL3KFJwXfZkJ8z5HBNLqzeRbz521Py-fT4sXgpl6vn18V8WRpey1RCK5kRFbO87pqWtdBw23RaW6k5k3wtO7AV0mYtLLdMou1EXVnssAYUjbF8Su5OXB9Tr6LpE5qt8c7lQIqBoJlaZRc7uUzwMQa06hD6vQ6jAqqOxan_4pQEdSqO_wIHe2N4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap</title><source>American Physical Society Journals</source><creator>Wang, Shannon X. ; Labaziewicz, Jaroslaw ; Ge, Yufei ; Shewmon, Ruth ; Chuang, Isaac L.</creator><creatorcontrib>Wang, Shannon X. ; Labaziewicz, Jaroslaw ; Ge, Yufei ; Shewmon, Ruth ; Chuang, Isaac L.</creatorcontrib><description>We demonstrate quantum control techniques for a single trapped ion in a cryogenic, surface-electrode trap. A narrow optical transition of Sr{sup +} along with the ground and first excited motional states of the harmonic trapping potential form a two-qubit system. The optical qubit transition is susceptible to magnetic field fluctuations, which we stabilize with a simple and compact method using superconducting rings. Decoherence of the motional qubit is suppressed by the cryogenic environment. ac Stark shift correction is accomplished by controlling the laser phase in the pulse sequencer, eliminating the need for an additional laser. Quantum process tomography is implemented on atomic and motional states by use of conditional pulse sequences. With these techniques, we demonstrate a Cirac-Zoller controlled-not gate in a single ion with a mean fidelity of 91(1)%.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.81.062332</identifier><language>eng</language><publisher>United States</publisher><subject>CHARGED PARTICLES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONTROL ; DIAGNOSTIC TECHNIQUES ; ELECTRODES ; FLUCTUATIONS ; IONS ; LASERS ; MAGNETIC FIELDS ; POTENTIALS ; PULSES ; SURFACES ; TOMOGRAPHY ; TRAPPING ; TRAPS ; VARIATIONS</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2010-06, Vol.81 (6), Article 062332</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-1982c452f36d7929173f7daaf8a3283b8d1f5e07b4f3f28efd465fede61e47cf3</citedby><cites>FETCH-LOGICAL-c368t-1982c452f36d7929173f7daaf8a3283b8d1f5e07b4f3f28efd465fede61e47cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21407925$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shannon X.</creatorcontrib><creatorcontrib>Labaziewicz, Jaroslaw</creatorcontrib><creatorcontrib>Ge, Yufei</creatorcontrib><creatorcontrib>Shewmon, Ruth</creatorcontrib><creatorcontrib>Chuang, Isaac L.</creatorcontrib><title>Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>We demonstrate quantum control techniques for a single trapped ion in a cryogenic, surface-electrode trap. A narrow optical transition of Sr{sup +} along with the ground and first excited motional states of the harmonic trapping potential form a two-qubit system. The optical qubit transition is susceptible to magnetic field fluctuations, which we stabilize with a simple and compact method using superconducting rings. Decoherence of the motional qubit is suppressed by the cryogenic environment. ac Stark shift correction is accomplished by controlling the laser phase in the pulse sequencer, eliminating the need for an additional laser. Quantum process tomography is implemented on atomic and motional states by use of conditional pulse sequences. With these techniques, we demonstrate a Cirac-Zoller controlled-not gate in a single ion with a mean fidelity of 91(1)%.</description><subject>CHARGED PARTICLES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONTROL</subject><subject>DIAGNOSTIC TECHNIQUES</subject><subject>ELECTRODES</subject><subject>FLUCTUATIONS</subject><subject>IONS</subject><subject>LASERS</subject><subject>MAGNETIC FIELDS</subject><subject>POTENTIALS</subject><subject>PULSES</subject><subject>SURFACES</subject><subject>TOMOGRAPHY</subject><subject>TRAPPING</subject><subject>TRAPS</subject><subject>VARIATIONS</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo1kE9LAzEQxYMoWKtfwNOC562ZJLubPZb6FwoV0XNIs5N2pU1qkhX225tSncsMjzc_Ho-QW6AzAMrv37ZjfMef-UzCjNaMc3ZGJkBbUULN2PnxrmjJWtFckqsYv2geIdsJWT3g3ruYgk69d4W3hS6-B-3SsC92ftObYqMTFr3Lugmj36DLWhyC1QZL3KFJwXfZkJ8z5HBNLqzeRbz521Py-fT4sXgpl6vn18V8WRpey1RCK5kRFbO87pqWtdBw23RaW6k5k3wtO7AV0mYtLLdMou1EXVnssAYUjbF8Su5OXB9Tr6LpE5qt8c7lQIqBoJlaZRc7uUzwMQa06hD6vQ6jAqqOxan_4pQEdSqO_wIHe2N4</recordid><startdate>20100624</startdate><enddate>20100624</enddate><creator>Wang, Shannon X.</creator><creator>Labaziewicz, Jaroslaw</creator><creator>Ge, Yufei</creator><creator>Shewmon, Ruth</creator><creator>Chuang, Isaac L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20100624</creationdate><title>Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap</title><author>Wang, Shannon X. ; Labaziewicz, Jaroslaw ; Ge, Yufei ; Shewmon, Ruth ; Chuang, Isaac L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-1982c452f36d7929173f7daaf8a3283b8d1f5e07b4f3f28efd465fede61e47cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>CHARGED PARTICLES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONTROL</topic><topic>DIAGNOSTIC TECHNIQUES</topic><topic>ELECTRODES</topic><topic>FLUCTUATIONS</topic><topic>IONS</topic><topic>LASERS</topic><topic>MAGNETIC FIELDS</topic><topic>POTENTIALS</topic><topic>PULSES</topic><topic>SURFACES</topic><topic>TOMOGRAPHY</topic><topic>TRAPPING</topic><topic>TRAPS</topic><topic>VARIATIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shannon X.</creatorcontrib><creatorcontrib>Labaziewicz, Jaroslaw</creatorcontrib><creatorcontrib>Ge, Yufei</creatorcontrib><creatorcontrib>Shewmon, Ruth</creatorcontrib><creatorcontrib>Chuang, Isaac L.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shannon X.</au><au>Labaziewicz, Jaroslaw</au><au>Ge, Yufei</au><au>Shewmon, Ruth</au><au>Chuang, Isaac L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2010-06-24</date><risdate>2010</risdate><volume>81</volume><issue>6</issue><artnum>062332</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>We demonstrate quantum control techniques for a single trapped ion in a cryogenic, surface-electrode trap. A narrow optical transition of Sr{sup +} along with the ground and first excited motional states of the harmonic trapping potential form a two-qubit system. The optical qubit transition is susceptible to magnetic field fluctuations, which we stabilize with a simple and compact method using superconducting rings. Decoherence of the motional qubit is suppressed by the cryogenic environment. ac Stark shift correction is accomplished by controlling the laser phase in the pulse sequencer, eliminating the need for an additional laser. Quantum process tomography is implemented on atomic and motional states by use of conditional pulse sequences. With these techniques, we demonstrate a Cirac-Zoller controlled-not gate in a single ion with a mean fidelity of 91(1)%.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.81.062332</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 2010-06, Vol.81 (6), Article 062332
issn 1050-2947
1094-1622
language eng
recordid cdi_osti_scitechconnect_21407925
source American Physical Society Journals
subjects CHARGED PARTICLES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONTROL
DIAGNOSTIC TECHNIQUES
ELECTRODES
FLUCTUATIONS
IONS
LASERS
MAGNETIC FIELDS
POTENTIALS
PULSES
SURFACES
TOMOGRAPHY
TRAPPING
TRAPS
VARIATIONS
title Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20a%20quantum%20logic%20gate%20in%20a%20cryogenic%20surface-electrode%20ion%20trap&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Wang,%20Shannon%20X.&rft.date=2010-06-24&rft.volume=81&rft.issue=6&rft.artnum=062332&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.81.062332&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_81_062332%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true