Modeling the Extragalactic Background Light from Stars and Dust
The extragalactic background light (EBL) from the far-infrared through the visible and extending into the ultraviolet is thought to be dominated by starlight, either through direct emission or through absorption and reradiation by dust. This is the most important energy range for absorbing gamma-ray...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2010-03, Vol.712 (1), p.238-249 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 249 |
---|---|
container_issue | 1 |
container_start_page | 238 |
container_title | The Astrophysical journal |
container_volume | 712 |
creator | Finke, Justin D Razzaque, Soebur Dermer, Charles D |
description | The extragalactic background light (EBL) from the far-infrared through the visible and extending into the ultraviolet is thought to be dominated by starlight, either through direct emission or through absorption and reradiation by dust. This is the most important energy range for absorbing gamma-rays from distant sources such as blazars and gamma-ray bursts and producing electron-positron pairs. In previous work, we presented EBL models in the optical through ultraviolet by consistently taking into account the star formation rate (SFR), initial mass function (IMF), and dust extinction, and treating stars on the main sequence as blackbodies. This technique is extended to include post-main-sequence stars and reprocessing of starlight by dust. In our simple model, the total energy absorbed by dust is assumed to be re-emitted as three blackbodies in the infrared, one at 40 K representing warm, large dust grains, one at 70 K representing hot, small dust grains, and one at 450 K representing polycyclic aromatic hydrocarbons. We find that our best-fit model combining the Hopkins and Beacom SFR using the Cole et al. parameterization with the Baldry and Glazebrook IMF agrees with available luminosity density data at a variety of redshifts. Our resulting EBL energy density is quite close to the lower limits from galaxy counts, though in two cases below the lower limits, and agrees fairly well with other recent EBL models shortward of about 5 {mu}m. Deabsorbing TeV gamma-ray spectra of various blazars with our EBL model gives results consistent with simple shock acceleration theory. We also find that the universe should be optically thin to gamma-rays with energies less than 20 GeV. |
doi_str_mv | 10.1088/0004-637X/712/1/238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_21394270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849459878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-8939760adc7e659178ea9c124a877373474d0f590883e8bb13a67231d58ef6bb3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKe_wJuCiCB0y1eb5Ep0zg-YeKGCdyFN0y3aNTNJQf-9LZXdKF6Fk_Ocl3MeAI4RnCDI-RRCSNOcsNcpQ3iKppjwHTBCGeEpJRnbBaMtsQ8OQnjrSyzECFw8uNLUtlkmcWWS-Wf0aqlqpaPVyZXS70vv2qZMFna5iknl3Tp5isqHRHWf122Ih2CvUnUwRz_vGLzczJ9nd-ni8fZ-drlIdYZpTLkgguVQlZqZPBOIcaOERpgqzhhhhDJawioT3THE8KJAROUME1Rm3FR5UZAxOBlyXYhWBm2j0SvtmsboKDEigmIGO-psoDbefbQmRLm2QZu6Vo1xbZCcCpoJznhHkoHU3oXgTSU33q6V_5IIyt6p7BXJ3pjsnEokO6fd1OlPvgpa1ZVXjbZhO4oJJSzD_R7nA2fdZtv9I1BuyqqDJ7_h_7b4BoNqj1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849459878</pqid></control><display><type>article</type><title>Modeling the Extragalactic Background Light from Stars and Dust</title><source>IOP Publishing Free Content</source><creator>Finke, Justin D ; Razzaque, Soebur ; Dermer, Charles D</creator><creatorcontrib>Finke, Justin D ; Razzaque, Soebur ; Dermer, Charles D</creatorcontrib><description>The extragalactic background light (EBL) from the far-infrared through the visible and extending into the ultraviolet is thought to be dominated by starlight, either through direct emission or through absorption and reradiation by dust. This is the most important energy range for absorbing gamma-rays from distant sources such as blazars and gamma-ray bursts and producing electron-positron pairs. In previous work, we presented EBL models in the optical through ultraviolet by consistently taking into account the star formation rate (SFR), initial mass function (IMF), and dust extinction, and treating stars on the main sequence as blackbodies. This technique is extended to include post-main-sequence stars and reprocessing of starlight by dust. In our simple model, the total energy absorbed by dust is assumed to be re-emitted as three blackbodies in the infrared, one at 40 K representing warm, large dust grains, one at 70 K representing hot, small dust grains, and one at 450 K representing polycyclic aromatic hydrocarbons. We find that our best-fit model combining the Hopkins and Beacom SFR using the Cole et al. parameterization with the Baldry and Glazebrook IMF agrees with available luminosity density data at a variety of redshifts. Our resulting EBL energy density is quite close to the lower limits from galaxy counts, though in two cases below the lower limits, and agrees fairly well with other recent EBL models shortward of about 5 {mu}m. Deabsorbing TeV gamma-ray spectra of various blazars with our EBL model gives results consistent with simple shock acceleration theory. We also find that the universe should be optically thin to gamma-rays with energies less than 20 GeV.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/712/1/238</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>ABSORPTION ; ANTILEPTONS ; ANTIMATTER ; ANTIPARTICLES ; AROMATICS ; Astronomy ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COSMIC GAMMA BURSTS ; COSMIC RADIATION ; DENSITY ; DUSTS ; Earth, ocean, space ; ELECTROMAGNETIC RADIATION ; ELECTRONS ; ELEMENTARY PARTICLES ; ENERGY DENSITY ; ENERGY RANGE ; Exact sciences and technology ; FERMIONS ; GALAXIES ; GAMMA RADIATION ; GAMMA SPECTRA ; GEV RANGE ; GEV RANGE 10-100 ; HYDROCARBONS ; IONIZING RADIATIONS ; LEPTONS ; LUMINOSITY ; MAIN SEQUENCE STARS ; MASS ; MATTER ; OPTICAL PROPERTIES ; ORGANIC COMPOUNDS ; PHYSICAL PROPERTIES ; POLYCYCLIC AROMATIC HYDROCARBONS ; POSITRONS ; PRIMARY COSMIC RADIATION ; RADIATIONS ; RED SHIFT ; SIMULATION ; SORPTION ; SPECTRA ; STARS ; TEV RANGE ; ULTRAVIOLET RADIATION ; UNIVERSE</subject><ispartof>The Astrophysical journal, 2010-03, Vol.712 (1), p.238-249</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-8939760adc7e659178ea9c124a877373474d0f590883e8bb13a67231d58ef6bb3</citedby><cites>FETCH-LOGICAL-c524t-8939760adc7e659178ea9c124a877373474d0f590883e8bb13a67231d58ef6bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/712/1/238/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27628,27924,27925,53931</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/712/1/238$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23437520$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21394270$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Finke, Justin D</creatorcontrib><creatorcontrib>Razzaque, Soebur</creatorcontrib><creatorcontrib>Dermer, Charles D</creatorcontrib><title>Modeling the Extragalactic Background Light from Stars and Dust</title><title>The Astrophysical journal</title><description>The extragalactic background light (EBL) from the far-infrared through the visible and extending into the ultraviolet is thought to be dominated by starlight, either through direct emission or through absorption and reradiation by dust. This is the most important energy range for absorbing gamma-rays from distant sources such as blazars and gamma-ray bursts and producing electron-positron pairs. In previous work, we presented EBL models in the optical through ultraviolet by consistently taking into account the star formation rate (SFR), initial mass function (IMF), and dust extinction, and treating stars on the main sequence as blackbodies. This technique is extended to include post-main-sequence stars and reprocessing of starlight by dust. In our simple model, the total energy absorbed by dust is assumed to be re-emitted as three blackbodies in the infrared, one at 40 K representing warm, large dust grains, one at 70 K representing hot, small dust grains, and one at 450 K representing polycyclic aromatic hydrocarbons. We find that our best-fit model combining the Hopkins and Beacom SFR using the Cole et al. parameterization with the Baldry and Glazebrook IMF agrees with available luminosity density data at a variety of redshifts. Our resulting EBL energy density is quite close to the lower limits from galaxy counts, though in two cases below the lower limits, and agrees fairly well with other recent EBL models shortward of about 5 {mu}m. Deabsorbing TeV gamma-ray spectra of various blazars with our EBL model gives results consistent with simple shock acceleration theory. We also find that the universe should be optically thin to gamma-rays with energies less than 20 GeV.</description><subject>ABSORPTION</subject><subject>ANTILEPTONS</subject><subject>ANTIMATTER</subject><subject>ANTIPARTICLES</subject><subject>AROMATICS</subject><subject>Astronomy</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COSMIC GAMMA BURSTS</subject><subject>COSMIC RADIATION</subject><subject>DENSITY</subject><subject>DUSTS</subject><subject>Earth, ocean, space</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELECTRONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>ENERGY DENSITY</subject><subject>ENERGY RANGE</subject><subject>Exact sciences and technology</subject><subject>FERMIONS</subject><subject>GALAXIES</subject><subject>GAMMA RADIATION</subject><subject>GAMMA SPECTRA</subject><subject>GEV RANGE</subject><subject>GEV RANGE 10-100</subject><subject>HYDROCARBONS</subject><subject>IONIZING RADIATIONS</subject><subject>LEPTONS</subject><subject>LUMINOSITY</subject><subject>MAIN SEQUENCE STARS</subject><subject>MASS</subject><subject>MATTER</subject><subject>OPTICAL PROPERTIES</subject><subject>ORGANIC COMPOUNDS</subject><subject>PHYSICAL PROPERTIES</subject><subject>POLYCYCLIC AROMATIC HYDROCARBONS</subject><subject>POSITRONS</subject><subject>PRIMARY COSMIC RADIATION</subject><subject>RADIATIONS</subject><subject>RED SHIFT</subject><subject>SIMULATION</subject><subject>SORPTION</subject><subject>SPECTRA</subject><subject>STARS</subject><subject>TEV RANGE</subject><subject>ULTRAVIOLET RADIATION</subject><subject>UNIVERSE</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKe_wJuCiCB0y1eb5Ep0zg-YeKGCdyFN0y3aNTNJQf-9LZXdKF6Fk_Ocl3MeAI4RnCDI-RRCSNOcsNcpQ3iKppjwHTBCGeEpJRnbBaMtsQ8OQnjrSyzECFw8uNLUtlkmcWWS-Wf0aqlqpaPVyZXS70vv2qZMFna5iknl3Tp5isqHRHWf122Ih2CvUnUwRz_vGLzczJ9nd-ni8fZ-drlIdYZpTLkgguVQlZqZPBOIcaOERpgqzhhhhDJawioT3THE8KJAROUME1Rm3FR5UZAxOBlyXYhWBm2j0SvtmsboKDEigmIGO-psoDbefbQmRLm2QZu6Vo1xbZCcCpoJznhHkoHU3oXgTSU33q6V_5IIyt6p7BXJ3pjsnEokO6fd1OlPvgpa1ZVXjbZhO4oJJSzD_R7nA2fdZtv9I1BuyqqDJ7_h_7b4BoNqj1Q</recordid><startdate>20100320</startdate><enddate>20100320</enddate><creator>Finke, Justin D</creator><creator>Razzaque, Soebur</creator><creator>Dermer, Charles D</creator><general>IOP Publishing</general><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>20100320</creationdate><title>Modeling the Extragalactic Background Light from Stars and Dust</title><author>Finke, Justin D ; Razzaque, Soebur ; Dermer, Charles D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-8939760adc7e659178ea9c124a877373474d0f590883e8bb13a67231d58ef6bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ABSORPTION</topic><topic>ANTILEPTONS</topic><topic>ANTIMATTER</topic><topic>ANTIPARTICLES</topic><topic>AROMATICS</topic><topic>Astronomy</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COSMIC GAMMA BURSTS</topic><topic>COSMIC RADIATION</topic><topic>DENSITY</topic><topic>DUSTS</topic><topic>Earth, ocean, space</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELECTRONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>ENERGY DENSITY</topic><topic>ENERGY RANGE</topic><topic>Exact sciences and technology</topic><topic>FERMIONS</topic><topic>GALAXIES</topic><topic>GAMMA RADIATION</topic><topic>GAMMA SPECTRA</topic><topic>GEV RANGE</topic><topic>GEV RANGE 10-100</topic><topic>HYDROCARBONS</topic><topic>IONIZING RADIATIONS</topic><topic>LEPTONS</topic><topic>LUMINOSITY</topic><topic>MAIN SEQUENCE STARS</topic><topic>MASS</topic><topic>MATTER</topic><topic>OPTICAL PROPERTIES</topic><topic>ORGANIC COMPOUNDS</topic><topic>PHYSICAL PROPERTIES</topic><topic>POLYCYCLIC AROMATIC HYDROCARBONS</topic><topic>POSITRONS</topic><topic>PRIMARY COSMIC RADIATION</topic><topic>RADIATIONS</topic><topic>RED SHIFT</topic><topic>SIMULATION</topic><topic>SORPTION</topic><topic>SPECTRA</topic><topic>STARS</topic><topic>TEV RANGE</topic><topic>ULTRAVIOLET RADIATION</topic><topic>UNIVERSE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finke, Justin D</creatorcontrib><creatorcontrib>Razzaque, Soebur</creatorcontrib><creatorcontrib>Dermer, Charles D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Finke, Justin D</au><au>Razzaque, Soebur</au><au>Dermer, Charles D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Extragalactic Background Light from Stars and Dust</atitle><jtitle>The Astrophysical journal</jtitle><date>2010-03-20</date><risdate>2010</risdate><volume>712</volume><issue>1</issue><spage>238</spage><epage>249</epage><pages>238-249</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>The extragalactic background light (EBL) from the far-infrared through the visible and extending into the ultraviolet is thought to be dominated by starlight, either through direct emission or through absorption and reradiation by dust. This is the most important energy range for absorbing gamma-rays from distant sources such as blazars and gamma-ray bursts and producing electron-positron pairs. In previous work, we presented EBL models in the optical through ultraviolet by consistently taking into account the star formation rate (SFR), initial mass function (IMF), and dust extinction, and treating stars on the main sequence as blackbodies. This technique is extended to include post-main-sequence stars and reprocessing of starlight by dust. In our simple model, the total energy absorbed by dust is assumed to be re-emitted as three blackbodies in the infrared, one at 40 K representing warm, large dust grains, one at 70 K representing hot, small dust grains, and one at 450 K representing polycyclic aromatic hydrocarbons. We find that our best-fit model combining the Hopkins and Beacom SFR using the Cole et al. parameterization with the Baldry and Glazebrook IMF agrees with available luminosity density data at a variety of redshifts. Our resulting EBL energy density is quite close to the lower limits from galaxy counts, though in two cases below the lower limits, and agrees fairly well with other recent EBL models shortward of about 5 {mu}m. Deabsorbing TeV gamma-ray spectra of various blazars with our EBL model gives results consistent with simple shock acceleration theory. We also find that the universe should be optically thin to gamma-rays with energies less than 20 GeV.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0004-637X/712/1/238</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2010-03, Vol.712 (1), p.238-249 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_21394270 |
source | IOP Publishing Free Content |
subjects | ABSORPTION ANTILEPTONS ANTIMATTER ANTIPARTICLES AROMATICS Astronomy ASTROPHYSICS, COSMOLOGY AND ASTRONOMY COSMIC GAMMA BURSTS COSMIC RADIATION DENSITY DUSTS Earth, ocean, space ELECTROMAGNETIC RADIATION ELECTRONS ELEMENTARY PARTICLES ENERGY DENSITY ENERGY RANGE Exact sciences and technology FERMIONS GALAXIES GAMMA RADIATION GAMMA SPECTRA GEV RANGE GEV RANGE 10-100 HYDROCARBONS IONIZING RADIATIONS LEPTONS LUMINOSITY MAIN SEQUENCE STARS MASS MATTER OPTICAL PROPERTIES ORGANIC COMPOUNDS PHYSICAL PROPERTIES POLYCYCLIC AROMATIC HYDROCARBONS POSITRONS PRIMARY COSMIC RADIATION RADIATIONS RED SHIFT SIMULATION SORPTION SPECTRA STARS TEV RANGE ULTRAVIOLET RADIATION UNIVERSE |
title | Modeling the Extragalactic Background Light from Stars and Dust |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Extragalactic%20Background%20Light%20from%20Stars%20and%20Dust&rft.jtitle=The%20Astrophysical%20journal&rft.au=Finke,%20Justin%20D&rft.date=2010-03-20&rft.volume=712&rft.issue=1&rft.spage=238&rft.epage=249&rft.pages=238-249&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/712/1/238&rft_dat=%3Cproquest_O3W%3E849459878%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849459878&rft_id=info:pmid/&rfr_iscdi=true |