Modeling the Extragalactic Background Light from Stars and Dust

The extragalactic background light (EBL) from the far-infrared through the visible and extending into the ultraviolet is thought to be dominated by starlight, either through direct emission or through absorption and reradiation by dust. This is the most important energy range for absorbing gamma-ray...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2010-03, Vol.712 (1), p.238-249
Hauptverfasser: Finke, Justin D, Razzaque, Soebur, Dermer, Charles D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue 1
container_start_page 238
container_title The Astrophysical journal
container_volume 712
creator Finke, Justin D
Razzaque, Soebur
Dermer, Charles D
description The extragalactic background light (EBL) from the far-infrared through the visible and extending into the ultraviolet is thought to be dominated by starlight, either through direct emission or through absorption and reradiation by dust. This is the most important energy range for absorbing gamma-rays from distant sources such as blazars and gamma-ray bursts and producing electron-positron pairs. In previous work, we presented EBL models in the optical through ultraviolet by consistently taking into account the star formation rate (SFR), initial mass function (IMF), and dust extinction, and treating stars on the main sequence as blackbodies. This technique is extended to include post-main-sequence stars and reprocessing of starlight by dust. In our simple model, the total energy absorbed by dust is assumed to be re-emitted as three blackbodies in the infrared, one at 40 K representing warm, large dust grains, one at 70 K representing hot, small dust grains, and one at 450 K representing polycyclic aromatic hydrocarbons. We find that our best-fit model combining the Hopkins and Beacom SFR using the Cole et al. parameterization with the Baldry and Glazebrook IMF agrees with available luminosity density data at a variety of redshifts. Our resulting EBL energy density is quite close to the lower limits from galaxy counts, though in two cases below the lower limits, and agrees fairly well with other recent EBL models shortward of about 5 {mu}m. Deabsorbing TeV gamma-ray spectra of various blazars with our EBL model gives results consistent with simple shock acceleration theory. We also find that the universe should be optically thin to gamma-rays with energies less than 20 GeV.
doi_str_mv 10.1088/0004-637X/712/1/238
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_21394270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849459878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-8939760adc7e659178ea9c124a877373474d0f590883e8bb13a67231d58ef6bb3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKe_wJuCiCB0y1eb5Ep0zg-YeKGCdyFN0y3aNTNJQf-9LZXdKF6Fk_Ocl3MeAI4RnCDI-RRCSNOcsNcpQ3iKppjwHTBCGeEpJRnbBaMtsQ8OQnjrSyzECFw8uNLUtlkmcWWS-Wf0aqlqpaPVyZXS70vv2qZMFna5iknl3Tp5isqHRHWf122Ih2CvUnUwRz_vGLzczJ9nd-ni8fZ-drlIdYZpTLkgguVQlZqZPBOIcaOERpgqzhhhhDJawioT3THE8KJAROUME1Rm3FR5UZAxOBlyXYhWBm2j0SvtmsboKDEigmIGO-psoDbefbQmRLm2QZu6Vo1xbZCcCpoJznhHkoHU3oXgTSU33q6V_5IIyt6p7BXJ3pjsnEokO6fd1OlPvgpa1ZVXjbZhO4oJJSzD_R7nA2fdZtv9I1BuyqqDJ7_h_7b4BoNqj1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849459878</pqid></control><display><type>article</type><title>Modeling the Extragalactic Background Light from Stars and Dust</title><source>IOP Publishing Free Content</source><creator>Finke, Justin D ; Razzaque, Soebur ; Dermer, Charles D</creator><creatorcontrib>Finke, Justin D ; Razzaque, Soebur ; Dermer, Charles D</creatorcontrib><description>The extragalactic background light (EBL) from the far-infrared through the visible and extending into the ultraviolet is thought to be dominated by starlight, either through direct emission or through absorption and reradiation by dust. This is the most important energy range for absorbing gamma-rays from distant sources such as blazars and gamma-ray bursts and producing electron-positron pairs. In previous work, we presented EBL models in the optical through ultraviolet by consistently taking into account the star formation rate (SFR), initial mass function (IMF), and dust extinction, and treating stars on the main sequence as blackbodies. This technique is extended to include post-main-sequence stars and reprocessing of starlight by dust. In our simple model, the total energy absorbed by dust is assumed to be re-emitted as three blackbodies in the infrared, one at 40 K representing warm, large dust grains, one at 70 K representing hot, small dust grains, and one at 450 K representing polycyclic aromatic hydrocarbons. We find that our best-fit model combining the Hopkins and Beacom SFR using the Cole et al. parameterization with the Baldry and Glazebrook IMF agrees with available luminosity density data at a variety of redshifts. Our resulting EBL energy density is quite close to the lower limits from galaxy counts, though in two cases below the lower limits, and agrees fairly well with other recent EBL models shortward of about 5 {mu}m. Deabsorbing TeV gamma-ray spectra of various blazars with our EBL model gives results consistent with simple shock acceleration theory. We also find that the universe should be optically thin to gamma-rays with energies less than 20 GeV.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/712/1/238</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>ABSORPTION ; ANTILEPTONS ; ANTIMATTER ; ANTIPARTICLES ; AROMATICS ; Astronomy ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COSMIC GAMMA BURSTS ; COSMIC RADIATION ; DENSITY ; DUSTS ; Earth, ocean, space ; ELECTROMAGNETIC RADIATION ; ELECTRONS ; ELEMENTARY PARTICLES ; ENERGY DENSITY ; ENERGY RANGE ; Exact sciences and technology ; FERMIONS ; GALAXIES ; GAMMA RADIATION ; GAMMA SPECTRA ; GEV RANGE ; GEV RANGE 10-100 ; HYDROCARBONS ; IONIZING RADIATIONS ; LEPTONS ; LUMINOSITY ; MAIN SEQUENCE STARS ; MASS ; MATTER ; OPTICAL PROPERTIES ; ORGANIC COMPOUNDS ; PHYSICAL PROPERTIES ; POLYCYCLIC AROMATIC HYDROCARBONS ; POSITRONS ; PRIMARY COSMIC RADIATION ; RADIATIONS ; RED SHIFT ; SIMULATION ; SORPTION ; SPECTRA ; STARS ; TEV RANGE ; ULTRAVIOLET RADIATION ; UNIVERSE</subject><ispartof>The Astrophysical journal, 2010-03, Vol.712 (1), p.238-249</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-8939760adc7e659178ea9c124a877373474d0f590883e8bb13a67231d58ef6bb3</citedby><cites>FETCH-LOGICAL-c524t-8939760adc7e659178ea9c124a877373474d0f590883e8bb13a67231d58ef6bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/712/1/238/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27628,27924,27925,53931</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/712/1/238$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23437520$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21394270$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Finke, Justin D</creatorcontrib><creatorcontrib>Razzaque, Soebur</creatorcontrib><creatorcontrib>Dermer, Charles D</creatorcontrib><title>Modeling the Extragalactic Background Light from Stars and Dust</title><title>The Astrophysical journal</title><description>The extragalactic background light (EBL) from the far-infrared through the visible and extending into the ultraviolet is thought to be dominated by starlight, either through direct emission or through absorption and reradiation by dust. This is the most important energy range for absorbing gamma-rays from distant sources such as blazars and gamma-ray bursts and producing electron-positron pairs. In previous work, we presented EBL models in the optical through ultraviolet by consistently taking into account the star formation rate (SFR), initial mass function (IMF), and dust extinction, and treating stars on the main sequence as blackbodies. This technique is extended to include post-main-sequence stars and reprocessing of starlight by dust. In our simple model, the total energy absorbed by dust is assumed to be re-emitted as three blackbodies in the infrared, one at 40 K representing warm, large dust grains, one at 70 K representing hot, small dust grains, and one at 450 K representing polycyclic aromatic hydrocarbons. We find that our best-fit model combining the Hopkins and Beacom SFR using the Cole et al. parameterization with the Baldry and Glazebrook IMF agrees with available luminosity density data at a variety of redshifts. Our resulting EBL energy density is quite close to the lower limits from galaxy counts, though in two cases below the lower limits, and agrees fairly well with other recent EBL models shortward of about 5 {mu}m. Deabsorbing TeV gamma-ray spectra of various blazars with our EBL model gives results consistent with simple shock acceleration theory. We also find that the universe should be optically thin to gamma-rays with energies less than 20 GeV.</description><subject>ABSORPTION</subject><subject>ANTILEPTONS</subject><subject>ANTIMATTER</subject><subject>ANTIPARTICLES</subject><subject>AROMATICS</subject><subject>Astronomy</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COSMIC GAMMA BURSTS</subject><subject>COSMIC RADIATION</subject><subject>DENSITY</subject><subject>DUSTS</subject><subject>Earth, ocean, space</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELECTRONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>ENERGY DENSITY</subject><subject>ENERGY RANGE</subject><subject>Exact sciences and technology</subject><subject>FERMIONS</subject><subject>GALAXIES</subject><subject>GAMMA RADIATION</subject><subject>GAMMA SPECTRA</subject><subject>GEV RANGE</subject><subject>GEV RANGE 10-100</subject><subject>HYDROCARBONS</subject><subject>IONIZING RADIATIONS</subject><subject>LEPTONS</subject><subject>LUMINOSITY</subject><subject>MAIN SEQUENCE STARS</subject><subject>MASS</subject><subject>MATTER</subject><subject>OPTICAL PROPERTIES</subject><subject>ORGANIC COMPOUNDS</subject><subject>PHYSICAL PROPERTIES</subject><subject>POLYCYCLIC AROMATIC HYDROCARBONS</subject><subject>POSITRONS</subject><subject>PRIMARY COSMIC RADIATION</subject><subject>RADIATIONS</subject><subject>RED SHIFT</subject><subject>SIMULATION</subject><subject>SORPTION</subject><subject>SPECTRA</subject><subject>STARS</subject><subject>TEV RANGE</subject><subject>ULTRAVIOLET RADIATION</subject><subject>UNIVERSE</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKe_wJuCiCB0y1eb5Ep0zg-YeKGCdyFN0y3aNTNJQf-9LZXdKF6Fk_Ocl3MeAI4RnCDI-RRCSNOcsNcpQ3iKppjwHTBCGeEpJRnbBaMtsQ8OQnjrSyzECFw8uNLUtlkmcWWS-Wf0aqlqpaPVyZXS70vv2qZMFna5iknl3Tp5isqHRHWf122Ih2CvUnUwRz_vGLzczJ9nd-ni8fZ-drlIdYZpTLkgguVQlZqZPBOIcaOERpgqzhhhhDJawioT3THE8KJAROUME1Rm3FR5UZAxOBlyXYhWBm2j0SvtmsboKDEigmIGO-psoDbefbQmRLm2QZu6Vo1xbZCcCpoJznhHkoHU3oXgTSU33q6V_5IIyt6p7BXJ3pjsnEokO6fd1OlPvgpa1ZVXjbZhO4oJJSzD_R7nA2fdZtv9I1BuyqqDJ7_h_7b4BoNqj1Q</recordid><startdate>20100320</startdate><enddate>20100320</enddate><creator>Finke, Justin D</creator><creator>Razzaque, Soebur</creator><creator>Dermer, Charles D</creator><general>IOP Publishing</general><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>20100320</creationdate><title>Modeling the Extragalactic Background Light from Stars and Dust</title><author>Finke, Justin D ; Razzaque, Soebur ; Dermer, Charles D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-8939760adc7e659178ea9c124a877373474d0f590883e8bb13a67231d58ef6bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ABSORPTION</topic><topic>ANTILEPTONS</topic><topic>ANTIMATTER</topic><topic>ANTIPARTICLES</topic><topic>AROMATICS</topic><topic>Astronomy</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COSMIC GAMMA BURSTS</topic><topic>COSMIC RADIATION</topic><topic>DENSITY</topic><topic>DUSTS</topic><topic>Earth, ocean, space</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELECTRONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>ENERGY DENSITY</topic><topic>ENERGY RANGE</topic><topic>Exact sciences and technology</topic><topic>FERMIONS</topic><topic>GALAXIES</topic><topic>GAMMA RADIATION</topic><topic>GAMMA SPECTRA</topic><topic>GEV RANGE</topic><topic>GEV RANGE 10-100</topic><topic>HYDROCARBONS</topic><topic>IONIZING RADIATIONS</topic><topic>LEPTONS</topic><topic>LUMINOSITY</topic><topic>MAIN SEQUENCE STARS</topic><topic>MASS</topic><topic>MATTER</topic><topic>OPTICAL PROPERTIES</topic><topic>ORGANIC COMPOUNDS</topic><topic>PHYSICAL PROPERTIES</topic><topic>POLYCYCLIC AROMATIC HYDROCARBONS</topic><topic>POSITRONS</topic><topic>PRIMARY COSMIC RADIATION</topic><topic>RADIATIONS</topic><topic>RED SHIFT</topic><topic>SIMULATION</topic><topic>SORPTION</topic><topic>SPECTRA</topic><topic>STARS</topic><topic>TEV RANGE</topic><topic>ULTRAVIOLET RADIATION</topic><topic>UNIVERSE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finke, Justin D</creatorcontrib><creatorcontrib>Razzaque, Soebur</creatorcontrib><creatorcontrib>Dermer, Charles D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Finke, Justin D</au><au>Razzaque, Soebur</au><au>Dermer, Charles D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Extragalactic Background Light from Stars and Dust</atitle><jtitle>The Astrophysical journal</jtitle><date>2010-03-20</date><risdate>2010</risdate><volume>712</volume><issue>1</issue><spage>238</spage><epage>249</epage><pages>238-249</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>The extragalactic background light (EBL) from the far-infrared through the visible and extending into the ultraviolet is thought to be dominated by starlight, either through direct emission or through absorption and reradiation by dust. This is the most important energy range for absorbing gamma-rays from distant sources such as blazars and gamma-ray bursts and producing electron-positron pairs. In previous work, we presented EBL models in the optical through ultraviolet by consistently taking into account the star formation rate (SFR), initial mass function (IMF), and dust extinction, and treating stars on the main sequence as blackbodies. This technique is extended to include post-main-sequence stars and reprocessing of starlight by dust. In our simple model, the total energy absorbed by dust is assumed to be re-emitted as three blackbodies in the infrared, one at 40 K representing warm, large dust grains, one at 70 K representing hot, small dust grains, and one at 450 K representing polycyclic aromatic hydrocarbons. We find that our best-fit model combining the Hopkins and Beacom SFR using the Cole et al. parameterization with the Baldry and Glazebrook IMF agrees with available luminosity density data at a variety of redshifts. Our resulting EBL energy density is quite close to the lower limits from galaxy counts, though in two cases below the lower limits, and agrees fairly well with other recent EBL models shortward of about 5 {mu}m. Deabsorbing TeV gamma-ray spectra of various blazars with our EBL model gives results consistent with simple shock acceleration theory. We also find that the universe should be optically thin to gamma-rays with energies less than 20 GeV.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0004-637X/712/1/238</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2010-03, Vol.712 (1), p.238-249
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_21394270
source IOP Publishing Free Content
subjects ABSORPTION
ANTILEPTONS
ANTIMATTER
ANTIPARTICLES
AROMATICS
Astronomy
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
COSMIC GAMMA BURSTS
COSMIC RADIATION
DENSITY
DUSTS
Earth, ocean, space
ELECTROMAGNETIC RADIATION
ELECTRONS
ELEMENTARY PARTICLES
ENERGY DENSITY
ENERGY RANGE
Exact sciences and technology
FERMIONS
GALAXIES
GAMMA RADIATION
GAMMA SPECTRA
GEV RANGE
GEV RANGE 10-100
HYDROCARBONS
IONIZING RADIATIONS
LEPTONS
LUMINOSITY
MAIN SEQUENCE STARS
MASS
MATTER
OPTICAL PROPERTIES
ORGANIC COMPOUNDS
PHYSICAL PROPERTIES
POLYCYCLIC AROMATIC HYDROCARBONS
POSITRONS
PRIMARY COSMIC RADIATION
RADIATIONS
RED SHIFT
SIMULATION
SORPTION
SPECTRA
STARS
TEV RANGE
ULTRAVIOLET RADIATION
UNIVERSE
title Modeling the Extragalactic Background Light from Stars and Dust
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Extragalactic%20Background%20Light%20from%20Stars%20and%20Dust&rft.jtitle=The%20Astrophysical%20journal&rft.au=Finke,%20Justin%20D&rft.date=2010-03-20&rft.volume=712&rft.issue=1&rft.spage=238&rft.epage=249&rft.pages=238-249&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/712/1/238&rft_dat=%3Cproquest_O3W%3E849459878%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849459878&rft_id=info:pmid/&rfr_iscdi=true