Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients

Purpose To compare dose distributions calculated using the Monte Carlo algorithm (MC) and Ray-Trace algorithm (effective path length method, EPL) for CyberKnife treatments of lung tumors. Materials and Methods An acceptable treatment plan is created using Multiplan 2.1 and MC dose calculation. Dose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation oncology, biology, physics biology, physics, 2010-05, Vol.77 (1), p.277-284
Hauptverfasser: Wilcox, Ellen E., Ph.D, Daskalov, George M., Ph.D, Lincoln, Holly, M.S, Shumway, Richard C., M.D, Kaplan, Bruce M., M.D, Colasanto, Joseph M., M.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 1
container_start_page 277
container_title International journal of radiation oncology, biology, physics
container_volume 77
creator Wilcox, Ellen E., Ph.D
Daskalov, George M., Ph.D
Lincoln, Holly, M.S
Shumway, Richard C., M.D
Kaplan, Bruce M., M.D
Colasanto, Joseph M., M.D
description Purpose To compare dose distributions calculated using the Monte Carlo algorithm (MC) and Ray-Trace algorithm (effective path length method, EPL) for CyberKnife treatments of lung tumors. Materials and Methods An acceptable treatment plan is created using Multiplan 2.1 and MC dose calculation. Dose is prescribed to the isodose line encompassing 95% of the planning target volume (PTV) and this is the plan clinically delivered. For comparison, the Ray-Trace algorithm with heterogeneity correction (EPL) is used to recalculate the dose distribution for this plan using the same beams, beam directions, and monitor units (MUs). Results The maximum doses calculated by the EPL to target PTV are uniformly larger than the MC plans by up to a factor of 1.63. Up to a factor of four larger maximum dose differences are observed for the critical structures in the chest. More beams traversing larger distances through low density lung are associated with larger differences, consistent with the fact that the EPL overestimates doses in low-density structures and this effect is more pronounced as collimator size decreases. Conclusions We establish that changing the treatment plan calculation algorithm from EPL to MC can produce large differences in target and critical organs' dose coverage. The observed discrepancies are larger for plans using smaller collimator sizes and have strong dependency on the anatomical relationship of target-critical structures.
doi_str_mv 10.1016/j.ijrobp.2009.08.001
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21372270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360301609029162</els_id><sourcerecordid>733891451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1c5c837adeb99245d3207db04593a56d6ecfcf1cb0248e2841d00d3f31f4bdf23</originalsourceid><addsrcrecordid>eNqFktuqEzEUhgdR3HXrG4gERLyamsMcvRBKtyesWNwVvQuZZGU3dSapSUaYt_IRzdiq4I1XgeRb68-__pVlDwleEkyqZ4elOXjXHZcU43aJmyXG5Fa2IE3d5qwsv9zOFphVOGcJvsjuhXDAiSB1cTe7SCW4KBleZD_WbjgKb4KzyGm07YW1oNCVC4CuTIjedGM0zga0Fr0cexHTazeh985GSHe-d0hYhT6KKd95IQGt-hvnTdwPAWnnUdwD2nkQcQAbZ4nNaG_QbhycD-hz4tB66sC_s0bDc7RCWw-9GYwVfkLXcVQTMhYxhrYimtQh3M_uaNEHeHA-L7NPr17u1m_yzYfXb9erTS6Luog5kaVsWC0UdG1Li1IximvVJdctE2WlKpBaaiI7TIsGaFMQhbFimhFddEpTdpk9PvV1IRoepIkg99Kl6cjIKWE1pTVO1NMTdfTu2wgh8sEECX0aI7gx8JqxpiVFSRJZnEjpXQgeND96MySXnGA-B8oP_BQonwPluOEprlT26CwwdgOoP0W_E0zAkzMgghS99sJKE_5ytCrL-pf-ixMHaWjfDfjZE1gJyvjZknLmfz_5t4HsjTVJ8ytMEA5u9DYFwgkPlGN-PS_fvHu4xbQlFWU_AWkp1nI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733891451</pqid></control><display><type>article</type><title>Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wilcox, Ellen E., Ph.D ; Daskalov, George M., Ph.D ; Lincoln, Holly, M.S ; Shumway, Richard C., M.D ; Kaplan, Bruce M., M.D ; Colasanto, Joseph M., M.D</creator><creatorcontrib>Wilcox, Ellen E., Ph.D ; Daskalov, George M., Ph.D ; Lincoln, Holly, M.S ; Shumway, Richard C., M.D ; Kaplan, Bruce M., M.D ; Colasanto, Joseph M., M.D</creatorcontrib><description>Purpose To compare dose distributions calculated using the Monte Carlo algorithm (MC) and Ray-Trace algorithm (effective path length method, EPL) for CyberKnife treatments of lung tumors. Materials and Methods An acceptable treatment plan is created using Multiplan 2.1 and MC dose calculation. Dose is prescribed to the isodose line encompassing 95% of the planning target volume (PTV) and this is the plan clinically delivered. For comparison, the Ray-Trace algorithm with heterogeneity correction (EPL) is used to recalculate the dose distribution for this plan using the same beams, beam directions, and monitor units (MUs). Results The maximum doses calculated by the EPL to target PTV are uniformly larger than the MC plans by up to a factor of 1.63. Up to a factor of four larger maximum dose differences are observed for the critical structures in the chest. More beams traversing larger distances through low density lung are associated with larger differences, consistent with the fact that the EPL overestimates doses in low-density structures and this effect is more pronounced as collimator size decreases. Conclusions We establish that changing the treatment plan calculation algorithm from EPL to MC can produce large differences in target and critical organs' dose coverage. The observed discrepancies are larger for plans using smaller collimator sizes and have strong dependency on the anatomical relationship of target-critical structures.</description><identifier>ISSN: 0360-3016</identifier><identifier>EISSN: 1879-355X</identifier><identifier>DOI: 10.1016/j.ijrobp.2009.08.001</identifier><identifier>PMID: 20004530</identifier><identifier>CODEN: IOBPD3</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>ALGORITHMS ; Biological and medical sciences ; BODY ; CALCULATION METHODS ; CRITICAL ORGANS ; CyberKnife ; DISEASES ; Diseases of the respiratory system ; Hematology, Oncology and Palliative Medicine ; Humans ; Lung - radiation effects ; Lung Neoplasms - pathology ; Lung Neoplasms - surgery ; LUNGS ; MATHEMATICAL LOGIC ; Medical sciences ; MEDICINE ; Monte Carlo calculation ; MONTE CARLO METHOD ; NEOPLASMS ; NUCLEAR MEDICINE ; ORGANS ; PLANNING ; Pneumology ; RADIATION DOSE DISTRIBUTIONS ; RADIOLOGY ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiosurgery - methods ; RADIOTHERAPY ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; RESPIRATORY SYSTEM ; SBRT lung ; SURGERY ; THERAPY ; Tumor Burden ; Tumors of the respiratory system and mediastinum</subject><ispartof>International journal of radiation oncology, biology, physics, 2010-05, Vol.77 (1), p.277-284</ispartof><rights>Elsevier Inc.</rights><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1c5c837adeb99245d3207db04593a56d6ecfcf1cb0248e2841d00d3f31f4bdf23</citedby><cites>FETCH-LOGICAL-c474t-1c5c837adeb99245d3207db04593a56d6ecfcf1cb0248e2841d00d3f31f4bdf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrobp.2009.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22655751$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20004530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21372270$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilcox, Ellen E., Ph.D</creatorcontrib><creatorcontrib>Daskalov, George M., Ph.D</creatorcontrib><creatorcontrib>Lincoln, Holly, M.S</creatorcontrib><creatorcontrib>Shumway, Richard C., M.D</creatorcontrib><creatorcontrib>Kaplan, Bruce M., M.D</creatorcontrib><creatorcontrib>Colasanto, Joseph M., M.D</creatorcontrib><title>Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients</title><title>International journal of radiation oncology, biology, physics</title><addtitle>Int J Radiat Oncol Biol Phys</addtitle><description>Purpose To compare dose distributions calculated using the Monte Carlo algorithm (MC) and Ray-Trace algorithm (effective path length method, EPL) for CyberKnife treatments of lung tumors. Materials and Methods An acceptable treatment plan is created using Multiplan 2.1 and MC dose calculation. Dose is prescribed to the isodose line encompassing 95% of the planning target volume (PTV) and this is the plan clinically delivered. For comparison, the Ray-Trace algorithm with heterogeneity correction (EPL) is used to recalculate the dose distribution for this plan using the same beams, beam directions, and monitor units (MUs). Results The maximum doses calculated by the EPL to target PTV are uniformly larger than the MC plans by up to a factor of 1.63. Up to a factor of four larger maximum dose differences are observed for the critical structures in the chest. More beams traversing larger distances through low density lung are associated with larger differences, consistent with the fact that the EPL overestimates doses in low-density structures and this effect is more pronounced as collimator size decreases. Conclusions We establish that changing the treatment plan calculation algorithm from EPL to MC can produce large differences in target and critical organs' dose coverage. The observed discrepancies are larger for plans using smaller collimator sizes and have strong dependency on the anatomical relationship of target-critical structures.</description><subject>ALGORITHMS</subject><subject>Biological and medical sciences</subject><subject>BODY</subject><subject>CALCULATION METHODS</subject><subject>CRITICAL ORGANS</subject><subject>CyberKnife</subject><subject>DISEASES</subject><subject>Diseases of the respiratory system</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Lung - radiation effects</subject><subject>Lung Neoplasms - pathology</subject><subject>Lung Neoplasms - surgery</subject><subject>LUNGS</subject><subject>MATHEMATICAL LOGIC</subject><subject>Medical sciences</subject><subject>MEDICINE</subject><subject>Monte Carlo calculation</subject><subject>MONTE CARLO METHOD</subject><subject>NEOPLASMS</subject><subject>NUCLEAR MEDICINE</subject><subject>ORGANS</subject><subject>PLANNING</subject><subject>Pneumology</subject><subject>RADIATION DOSE DISTRIBUTIONS</subject><subject>RADIOLOGY</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiosurgery - methods</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>RESPIRATORY SYSTEM</subject><subject>SBRT lung</subject><subject>SURGERY</subject><subject>THERAPY</subject><subject>Tumor Burden</subject><subject>Tumors of the respiratory system and mediastinum</subject><issn>0360-3016</issn><issn>1879-355X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFktuqEzEUhgdR3HXrG4gERLyamsMcvRBKtyesWNwVvQuZZGU3dSapSUaYt_IRzdiq4I1XgeRb68-__pVlDwleEkyqZ4elOXjXHZcU43aJmyXG5Fa2IE3d5qwsv9zOFphVOGcJvsjuhXDAiSB1cTe7SCW4KBleZD_WbjgKb4KzyGm07YW1oNCVC4CuTIjedGM0zga0Fr0cexHTazeh985GSHe-d0hYhT6KKd95IQGt-hvnTdwPAWnnUdwD2nkQcQAbZ4nNaG_QbhycD-hz4tB66sC_s0bDc7RCWw-9GYwVfkLXcVQTMhYxhrYimtQh3M_uaNEHeHA-L7NPr17u1m_yzYfXb9erTS6Luog5kaVsWC0UdG1Li1IximvVJdctE2WlKpBaaiI7TIsGaFMQhbFimhFddEpTdpk9PvV1IRoepIkg99Kl6cjIKWE1pTVO1NMTdfTu2wgh8sEECX0aI7gx8JqxpiVFSRJZnEjpXQgeND96MySXnGA-B8oP_BQonwPluOEprlT26CwwdgOoP0W_E0zAkzMgghS99sJKE_5ytCrL-pf-ixMHaWjfDfjZE1gJyvjZknLmfz_5t4HsjTVJ8ytMEA5u9DYFwgkPlGN-PS_fvHu4xbQlFWU_AWkp1nI</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Wilcox, Ellen E., Ph.D</creator><creator>Daskalov, George M., Ph.D</creator><creator>Lincoln, Holly, M.S</creator><creator>Shumway, Richard C., M.D</creator><creator>Kaplan, Bruce M., M.D</creator><creator>Colasanto, Joseph M., M.D</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20100501</creationdate><title>Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients</title><author>Wilcox, Ellen E., Ph.D ; Daskalov, George M., Ph.D ; Lincoln, Holly, M.S ; Shumway, Richard C., M.D ; Kaplan, Bruce M., M.D ; Colasanto, Joseph M., M.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1c5c837adeb99245d3207db04593a56d6ecfcf1cb0248e2841d00d3f31f4bdf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ALGORITHMS</topic><topic>Biological and medical sciences</topic><topic>BODY</topic><topic>CALCULATION METHODS</topic><topic>CRITICAL ORGANS</topic><topic>CyberKnife</topic><topic>DISEASES</topic><topic>Diseases of the respiratory system</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Lung - radiation effects</topic><topic>Lung Neoplasms - pathology</topic><topic>Lung Neoplasms - surgery</topic><topic>LUNGS</topic><topic>MATHEMATICAL LOGIC</topic><topic>Medical sciences</topic><topic>MEDICINE</topic><topic>Monte Carlo calculation</topic><topic>MONTE CARLO METHOD</topic><topic>NEOPLASMS</topic><topic>NUCLEAR MEDICINE</topic><topic>ORGANS</topic><topic>PLANNING</topic><topic>Pneumology</topic><topic>RADIATION DOSE DISTRIBUTIONS</topic><topic>RADIOLOGY</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiosurgery - methods</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>RESPIRATORY SYSTEM</topic><topic>SBRT lung</topic><topic>SURGERY</topic><topic>THERAPY</topic><topic>Tumor Burden</topic><topic>Tumors of the respiratory system and mediastinum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilcox, Ellen E., Ph.D</creatorcontrib><creatorcontrib>Daskalov, George M., Ph.D</creatorcontrib><creatorcontrib>Lincoln, Holly, M.S</creatorcontrib><creatorcontrib>Shumway, Richard C., M.D</creatorcontrib><creatorcontrib>Kaplan, Bruce M., M.D</creatorcontrib><creatorcontrib>Colasanto, Joseph M., M.D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>International journal of radiation oncology, biology, physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilcox, Ellen E., Ph.D</au><au>Daskalov, George M., Ph.D</au><au>Lincoln, Holly, M.S</au><au>Shumway, Richard C., M.D</au><au>Kaplan, Bruce M., M.D</au><au>Colasanto, Joseph M., M.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients</atitle><jtitle>International journal of radiation oncology, biology, physics</jtitle><addtitle>Int J Radiat Oncol Biol Phys</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>77</volume><issue>1</issue><spage>277</spage><epage>284</epage><pages>277-284</pages><issn>0360-3016</issn><eissn>1879-355X</eissn><coden>IOBPD3</coden><abstract>Purpose To compare dose distributions calculated using the Monte Carlo algorithm (MC) and Ray-Trace algorithm (effective path length method, EPL) for CyberKnife treatments of lung tumors. Materials and Methods An acceptable treatment plan is created using Multiplan 2.1 and MC dose calculation. Dose is prescribed to the isodose line encompassing 95% of the planning target volume (PTV) and this is the plan clinically delivered. For comparison, the Ray-Trace algorithm with heterogeneity correction (EPL) is used to recalculate the dose distribution for this plan using the same beams, beam directions, and monitor units (MUs). Results The maximum doses calculated by the EPL to target PTV are uniformly larger than the MC plans by up to a factor of 1.63. Up to a factor of four larger maximum dose differences are observed for the critical structures in the chest. More beams traversing larger distances through low density lung are associated with larger differences, consistent with the fact that the EPL overestimates doses in low-density structures and this effect is more pronounced as collimator size decreases. Conclusions We establish that changing the treatment plan calculation algorithm from EPL to MC can produce large differences in target and critical organs' dose coverage. The observed discrepancies are larger for plans using smaller collimator sizes and have strong dependency on the anatomical relationship of target-critical structures.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>20004530</pmid><doi>10.1016/j.ijrobp.2009.08.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3016
ispartof International journal of radiation oncology, biology, physics, 2010-05, Vol.77 (1), p.277-284
issn 0360-3016
1879-355X
language eng
recordid cdi_osti_scitechconnect_21372270
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects ALGORITHMS
Biological and medical sciences
BODY
CALCULATION METHODS
CRITICAL ORGANS
CyberKnife
DISEASES
Diseases of the respiratory system
Hematology, Oncology and Palliative Medicine
Humans
Lung - radiation effects
Lung Neoplasms - pathology
Lung Neoplasms - surgery
LUNGS
MATHEMATICAL LOGIC
Medical sciences
MEDICINE
Monte Carlo calculation
MONTE CARLO METHOD
NEOPLASMS
NUCLEAR MEDICINE
ORGANS
PLANNING
Pneumology
RADIATION DOSE DISTRIBUTIONS
RADIOLOGY
RADIOLOGY AND NUCLEAR MEDICINE
Radiosurgery - methods
RADIOTHERAPY
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
RESPIRATORY SYSTEM
SBRT lung
SURGERY
THERAPY
Tumor Burden
Tumors of the respiratory system and mediastinum
title Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Planned%20Dose%20Distributions%20Calculated%20by%20Monte%20Carlo%20and%20Ray-Trace%20Algorithms%20for%20the%20Treatment%20of%20Lung%20Tumors%20With%20CyberKnife:%20A%20Preliminary%20Study%20in%2033%20Patients&rft.jtitle=International%20journal%20of%20radiation%20oncology,%20biology,%20physics&rft.au=Wilcox,%20Ellen%20E.,%20Ph.D&rft.date=2010-05-01&rft.volume=77&rft.issue=1&rft.spage=277&rft.epage=284&rft.pages=277-284&rft.issn=0360-3016&rft.eissn=1879-355X&rft.coden=IOBPD3&rft_id=info:doi/10.1016/j.ijrobp.2009.08.001&rft_dat=%3Cproquest_osti_%3E733891451%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733891451&rft_id=info:pmid/20004530&rft_els_id=S0360301609029162&rfr_iscdi=true