Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients
Purpose To compare dose distributions calculated using the Monte Carlo algorithm (MC) and Ray-Trace algorithm (effective path length method, EPL) for CyberKnife treatments of lung tumors. Materials and Methods An acceptable treatment plan is created using Multiplan 2.1 and MC dose calculation. Dose...
Gespeichert in:
Veröffentlicht in: | International journal of radiation oncology, biology, physics biology, physics, 2010-05, Vol.77 (1), p.277-284 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 284 |
---|---|
container_issue | 1 |
container_start_page | 277 |
container_title | International journal of radiation oncology, biology, physics |
container_volume | 77 |
creator | Wilcox, Ellen E., Ph.D Daskalov, George M., Ph.D Lincoln, Holly, M.S Shumway, Richard C., M.D Kaplan, Bruce M., M.D Colasanto, Joseph M., M.D |
description | Purpose To compare dose distributions calculated using the Monte Carlo algorithm (MC) and Ray-Trace algorithm (effective path length method, EPL) for CyberKnife treatments of lung tumors. Materials and Methods An acceptable treatment plan is created using Multiplan 2.1 and MC dose calculation. Dose is prescribed to the isodose line encompassing 95% of the planning target volume (PTV) and this is the plan clinically delivered. For comparison, the Ray-Trace algorithm with heterogeneity correction (EPL) is used to recalculate the dose distribution for this plan using the same beams, beam directions, and monitor units (MUs). Results The maximum doses calculated by the EPL to target PTV are uniformly larger than the MC plans by up to a factor of 1.63. Up to a factor of four larger maximum dose differences are observed for the critical structures in the chest. More beams traversing larger distances through low density lung are associated with larger differences, consistent with the fact that the EPL overestimates doses in low-density structures and this effect is more pronounced as collimator size decreases. Conclusions We establish that changing the treatment plan calculation algorithm from EPL to MC can produce large differences in target and critical organs' dose coverage. The observed discrepancies are larger for plans using smaller collimator sizes and have strong dependency on the anatomical relationship of target-critical structures. |
doi_str_mv | 10.1016/j.ijrobp.2009.08.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21372270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360301609029162</els_id><sourcerecordid>733891451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-1c5c837adeb99245d3207db04593a56d6ecfcf1cb0248e2841d00d3f31f4bdf23</originalsourceid><addsrcrecordid>eNqFktuqEzEUhgdR3HXrG4gERLyamsMcvRBKtyesWNwVvQuZZGU3dSapSUaYt_IRzdiq4I1XgeRb68-__pVlDwleEkyqZ4elOXjXHZcU43aJmyXG5Fa2IE3d5qwsv9zOFphVOGcJvsjuhXDAiSB1cTe7SCW4KBleZD_WbjgKb4KzyGm07YW1oNCVC4CuTIjedGM0zga0Fr0cexHTazeh985GSHe-d0hYhT6KKd95IQGt-hvnTdwPAWnnUdwD2nkQcQAbZ4nNaG_QbhycD-hz4tB66sC_s0bDc7RCWw-9GYwVfkLXcVQTMhYxhrYimtQh3M_uaNEHeHA-L7NPr17u1m_yzYfXb9erTS6Luog5kaVsWC0UdG1Li1IximvVJdctE2WlKpBaaiI7TIsGaFMQhbFimhFddEpTdpk9PvV1IRoepIkg99Kl6cjIKWE1pTVO1NMTdfTu2wgh8sEECX0aI7gx8JqxpiVFSRJZnEjpXQgeND96MySXnGA-B8oP_BQonwPluOEprlT26CwwdgOoP0W_E0zAkzMgghS99sJKE_5ytCrL-pf-ixMHaWjfDfjZE1gJyvjZknLmfz_5t4HsjTVJ8ytMEA5u9DYFwgkPlGN-PS_fvHu4xbQlFWU_AWkp1nI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733891451</pqid></control><display><type>article</type><title>Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wilcox, Ellen E., Ph.D ; Daskalov, George M., Ph.D ; Lincoln, Holly, M.S ; Shumway, Richard C., M.D ; Kaplan, Bruce M., M.D ; Colasanto, Joseph M., M.D</creator><creatorcontrib>Wilcox, Ellen E., Ph.D ; Daskalov, George M., Ph.D ; Lincoln, Holly, M.S ; Shumway, Richard C., M.D ; Kaplan, Bruce M., M.D ; Colasanto, Joseph M., M.D</creatorcontrib><description>Purpose To compare dose distributions calculated using the Monte Carlo algorithm (MC) and Ray-Trace algorithm (effective path length method, EPL) for CyberKnife treatments of lung tumors. Materials and Methods An acceptable treatment plan is created using Multiplan 2.1 and MC dose calculation. Dose is prescribed to the isodose line encompassing 95% of the planning target volume (PTV) and this is the plan clinically delivered. For comparison, the Ray-Trace algorithm with heterogeneity correction (EPL) is used to recalculate the dose distribution for this plan using the same beams, beam directions, and monitor units (MUs). Results The maximum doses calculated by the EPL to target PTV are uniformly larger than the MC plans by up to a factor of 1.63. Up to a factor of four larger maximum dose differences are observed for the critical structures in the chest. More beams traversing larger distances through low density lung are associated with larger differences, consistent with the fact that the EPL overestimates doses in low-density structures and this effect is more pronounced as collimator size decreases. Conclusions We establish that changing the treatment plan calculation algorithm from EPL to MC can produce large differences in target and critical organs' dose coverage. The observed discrepancies are larger for plans using smaller collimator sizes and have strong dependency on the anatomical relationship of target-critical structures.</description><identifier>ISSN: 0360-3016</identifier><identifier>EISSN: 1879-355X</identifier><identifier>DOI: 10.1016/j.ijrobp.2009.08.001</identifier><identifier>PMID: 20004530</identifier><identifier>CODEN: IOBPD3</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>ALGORITHMS ; Biological and medical sciences ; BODY ; CALCULATION METHODS ; CRITICAL ORGANS ; CyberKnife ; DISEASES ; Diseases of the respiratory system ; Hematology, Oncology and Palliative Medicine ; Humans ; Lung - radiation effects ; Lung Neoplasms - pathology ; Lung Neoplasms - surgery ; LUNGS ; MATHEMATICAL LOGIC ; Medical sciences ; MEDICINE ; Monte Carlo calculation ; MONTE CARLO METHOD ; NEOPLASMS ; NUCLEAR MEDICINE ; ORGANS ; PLANNING ; Pneumology ; RADIATION DOSE DISTRIBUTIONS ; RADIOLOGY ; RADIOLOGY AND NUCLEAR MEDICINE ; Radiosurgery - methods ; RADIOTHERAPY ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; RESPIRATORY SYSTEM ; SBRT lung ; SURGERY ; THERAPY ; Tumor Burden ; Tumors of the respiratory system and mediastinum</subject><ispartof>International journal of radiation oncology, biology, physics, 2010-05, Vol.77 (1), p.277-284</ispartof><rights>Elsevier Inc.</rights><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-1c5c837adeb99245d3207db04593a56d6ecfcf1cb0248e2841d00d3f31f4bdf23</citedby><cites>FETCH-LOGICAL-c474t-1c5c837adeb99245d3207db04593a56d6ecfcf1cb0248e2841d00d3f31f4bdf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrobp.2009.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22655751$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20004530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21372270$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilcox, Ellen E., Ph.D</creatorcontrib><creatorcontrib>Daskalov, George M., Ph.D</creatorcontrib><creatorcontrib>Lincoln, Holly, M.S</creatorcontrib><creatorcontrib>Shumway, Richard C., M.D</creatorcontrib><creatorcontrib>Kaplan, Bruce M., M.D</creatorcontrib><creatorcontrib>Colasanto, Joseph M., M.D</creatorcontrib><title>Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients</title><title>International journal of radiation oncology, biology, physics</title><addtitle>Int J Radiat Oncol Biol Phys</addtitle><description>Purpose To compare dose distributions calculated using the Monte Carlo algorithm (MC) and Ray-Trace algorithm (effective path length method, EPL) for CyberKnife treatments of lung tumors. Materials and Methods An acceptable treatment plan is created using Multiplan 2.1 and MC dose calculation. Dose is prescribed to the isodose line encompassing 95% of the planning target volume (PTV) and this is the plan clinically delivered. For comparison, the Ray-Trace algorithm with heterogeneity correction (EPL) is used to recalculate the dose distribution for this plan using the same beams, beam directions, and monitor units (MUs). Results The maximum doses calculated by the EPL to target PTV are uniformly larger than the MC plans by up to a factor of 1.63. Up to a factor of four larger maximum dose differences are observed for the critical structures in the chest. More beams traversing larger distances through low density lung are associated with larger differences, consistent with the fact that the EPL overestimates doses in low-density structures and this effect is more pronounced as collimator size decreases. Conclusions We establish that changing the treatment plan calculation algorithm from EPL to MC can produce large differences in target and critical organs' dose coverage. The observed discrepancies are larger for plans using smaller collimator sizes and have strong dependency on the anatomical relationship of target-critical structures.</description><subject>ALGORITHMS</subject><subject>Biological and medical sciences</subject><subject>BODY</subject><subject>CALCULATION METHODS</subject><subject>CRITICAL ORGANS</subject><subject>CyberKnife</subject><subject>DISEASES</subject><subject>Diseases of the respiratory system</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Lung - radiation effects</subject><subject>Lung Neoplasms - pathology</subject><subject>Lung Neoplasms - surgery</subject><subject>LUNGS</subject><subject>MATHEMATICAL LOGIC</subject><subject>Medical sciences</subject><subject>MEDICINE</subject><subject>Monte Carlo calculation</subject><subject>MONTE CARLO METHOD</subject><subject>NEOPLASMS</subject><subject>NUCLEAR MEDICINE</subject><subject>ORGANS</subject><subject>PLANNING</subject><subject>Pneumology</subject><subject>RADIATION DOSE DISTRIBUTIONS</subject><subject>RADIOLOGY</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Radiosurgery - methods</subject><subject>RADIOTHERAPY</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>RESPIRATORY SYSTEM</subject><subject>SBRT lung</subject><subject>SURGERY</subject><subject>THERAPY</subject><subject>Tumor Burden</subject><subject>Tumors of the respiratory system and mediastinum</subject><issn>0360-3016</issn><issn>1879-355X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFktuqEzEUhgdR3HXrG4gERLyamsMcvRBKtyesWNwVvQuZZGU3dSapSUaYt_IRzdiq4I1XgeRb68-__pVlDwleEkyqZ4elOXjXHZcU43aJmyXG5Fa2IE3d5qwsv9zOFphVOGcJvsjuhXDAiSB1cTe7SCW4KBleZD_WbjgKb4KzyGm07YW1oNCVC4CuTIjedGM0zga0Fr0cexHTazeh985GSHe-d0hYhT6KKd95IQGt-hvnTdwPAWnnUdwD2nkQcQAbZ4nNaG_QbhycD-hz4tB66sC_s0bDc7RCWw-9GYwVfkLXcVQTMhYxhrYimtQh3M_uaNEHeHA-L7NPr17u1m_yzYfXb9erTS6Luog5kaVsWC0UdG1Li1IximvVJdctE2WlKpBaaiI7TIsGaFMQhbFimhFddEpTdpk9PvV1IRoepIkg99Kl6cjIKWE1pTVO1NMTdfTu2wgh8sEECX0aI7gx8JqxpiVFSRJZnEjpXQgeND96MySXnGA-B8oP_BQonwPluOEprlT26CwwdgOoP0W_E0zAkzMgghS99sJKE_5ytCrL-pf-ixMHaWjfDfjZE1gJyvjZknLmfz_5t4HsjTVJ8ytMEA5u9DYFwgkPlGN-PS_fvHu4xbQlFWU_AWkp1nI</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Wilcox, Ellen E., Ph.D</creator><creator>Daskalov, George M., Ph.D</creator><creator>Lincoln, Holly, M.S</creator><creator>Shumway, Richard C., M.D</creator><creator>Kaplan, Bruce M., M.D</creator><creator>Colasanto, Joseph M., M.D</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20100501</creationdate><title>Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients</title><author>Wilcox, Ellen E., Ph.D ; Daskalov, George M., Ph.D ; Lincoln, Holly, M.S ; Shumway, Richard C., M.D ; Kaplan, Bruce M., M.D ; Colasanto, Joseph M., M.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-1c5c837adeb99245d3207db04593a56d6ecfcf1cb0248e2841d00d3f31f4bdf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ALGORITHMS</topic><topic>Biological and medical sciences</topic><topic>BODY</topic><topic>CALCULATION METHODS</topic><topic>CRITICAL ORGANS</topic><topic>CyberKnife</topic><topic>DISEASES</topic><topic>Diseases of the respiratory system</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Lung - radiation effects</topic><topic>Lung Neoplasms - pathology</topic><topic>Lung Neoplasms - surgery</topic><topic>LUNGS</topic><topic>MATHEMATICAL LOGIC</topic><topic>Medical sciences</topic><topic>MEDICINE</topic><topic>Monte Carlo calculation</topic><topic>MONTE CARLO METHOD</topic><topic>NEOPLASMS</topic><topic>NUCLEAR MEDICINE</topic><topic>ORGANS</topic><topic>PLANNING</topic><topic>Pneumology</topic><topic>RADIATION DOSE DISTRIBUTIONS</topic><topic>RADIOLOGY</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Radiosurgery - methods</topic><topic>RADIOTHERAPY</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>RESPIRATORY SYSTEM</topic><topic>SBRT lung</topic><topic>SURGERY</topic><topic>THERAPY</topic><topic>Tumor Burden</topic><topic>Tumors of the respiratory system and mediastinum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilcox, Ellen E., Ph.D</creatorcontrib><creatorcontrib>Daskalov, George M., Ph.D</creatorcontrib><creatorcontrib>Lincoln, Holly, M.S</creatorcontrib><creatorcontrib>Shumway, Richard C., M.D</creatorcontrib><creatorcontrib>Kaplan, Bruce M., M.D</creatorcontrib><creatorcontrib>Colasanto, Joseph M., M.D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>International journal of radiation oncology, biology, physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilcox, Ellen E., Ph.D</au><au>Daskalov, George M., Ph.D</au><au>Lincoln, Holly, M.S</au><au>Shumway, Richard C., M.D</au><au>Kaplan, Bruce M., M.D</au><au>Colasanto, Joseph M., M.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients</atitle><jtitle>International journal of radiation oncology, biology, physics</jtitle><addtitle>Int J Radiat Oncol Biol Phys</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>77</volume><issue>1</issue><spage>277</spage><epage>284</epage><pages>277-284</pages><issn>0360-3016</issn><eissn>1879-355X</eissn><coden>IOBPD3</coden><abstract>Purpose To compare dose distributions calculated using the Monte Carlo algorithm (MC) and Ray-Trace algorithm (effective path length method, EPL) for CyberKnife treatments of lung tumors. Materials and Methods An acceptable treatment plan is created using Multiplan 2.1 and MC dose calculation. Dose is prescribed to the isodose line encompassing 95% of the planning target volume (PTV) and this is the plan clinically delivered. For comparison, the Ray-Trace algorithm with heterogeneity correction (EPL) is used to recalculate the dose distribution for this plan using the same beams, beam directions, and monitor units (MUs). Results The maximum doses calculated by the EPL to target PTV are uniformly larger than the MC plans by up to a factor of 1.63. Up to a factor of four larger maximum dose differences are observed for the critical structures in the chest. More beams traversing larger distances through low density lung are associated with larger differences, consistent with the fact that the EPL overestimates doses in low-density structures and this effect is more pronounced as collimator size decreases. Conclusions We establish that changing the treatment plan calculation algorithm from EPL to MC can produce large differences in target and critical organs' dose coverage. The observed discrepancies are larger for plans using smaller collimator sizes and have strong dependency on the anatomical relationship of target-critical structures.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>20004530</pmid><doi>10.1016/j.ijrobp.2009.08.001</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3016 |
ispartof | International journal of radiation oncology, biology, physics, 2010-05, Vol.77 (1), p.277-284 |
issn | 0360-3016 1879-355X |
language | eng |
recordid | cdi_osti_scitechconnect_21372270 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | ALGORITHMS Biological and medical sciences BODY CALCULATION METHODS CRITICAL ORGANS CyberKnife DISEASES Diseases of the respiratory system Hematology, Oncology and Palliative Medicine Humans Lung - radiation effects Lung Neoplasms - pathology Lung Neoplasms - surgery LUNGS MATHEMATICAL LOGIC Medical sciences MEDICINE Monte Carlo calculation MONTE CARLO METHOD NEOPLASMS NUCLEAR MEDICINE ORGANS PLANNING Pneumology RADIATION DOSE DISTRIBUTIONS RADIOLOGY RADIOLOGY AND NUCLEAR MEDICINE Radiosurgery - methods RADIOTHERAPY Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted - methods Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) RESPIRATORY SYSTEM SBRT lung SURGERY THERAPY Tumor Burden Tumors of the respiratory system and mediastinum |
title | Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Planned%20Dose%20Distributions%20Calculated%20by%20Monte%20Carlo%20and%20Ray-Trace%20Algorithms%20for%20the%20Treatment%20of%20Lung%20Tumors%20With%20CyberKnife:%20A%20Preliminary%20Study%20in%2033%20Patients&rft.jtitle=International%20journal%20of%20radiation%20oncology,%20biology,%20physics&rft.au=Wilcox,%20Ellen%20E.,%20Ph.D&rft.date=2010-05-01&rft.volume=77&rft.issue=1&rft.spage=277&rft.epage=284&rft.pages=277-284&rft.issn=0360-3016&rft.eissn=1879-355X&rft.coden=IOBPD3&rft_id=info:doi/10.1016/j.ijrobp.2009.08.001&rft_dat=%3Cproquest_osti_%3E733891451%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733891451&rft_id=info:pmid/20004530&rft_els_id=S0360301609029162&rfr_iscdi=true |