The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation
The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, CeVO 4 and Ag 3VO 4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level origi...
Gespeichert in:
Veröffentlicht in: | Journal of solid state chemistry 2009-07, Vol.182 (7), p.1964-1971 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1971 |
---|---|
container_issue | 7 |
container_start_page | 1964 |
container_title | Journal of solid state chemistry |
container_volume | 182 |
creator | Dolgos, Michelle R. Paraskos, Alexandra M. Stoltzfus, Matthew W. Yarnell, Samantha C. Woodward, Patrick M. |
description | The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba
3(VO
4)
2, Pb
3(VO
4)
2, YVO
4, BiVO
4, CeVO
4 and Ag
3VO
4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba
3(VO
4)
2 and YVO
4 have similar band gaps, both 3.8
eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb
3(VO
4)
2 and BiVO
4 the band gap is reduced by 0.9–1.0
eV through interactions of (a) the filled cation 6
s orbitals with nonbonding O 2
p states at the top of the valence band, and (b) overlap of empty 6
p orbitals with antibonding V 3
d–O 2
p states at the bottom of the conduction band. In Ag
3VO
4 mixing between filled Ag 4
d and O 2
p states destabilizes states at the top of the valence band leading to a large decrease in the band gap (
E
g=2.2
eV). In CeVO
4 excitations from partially filled 4
f orbitals into the conduction band lower the effective band gap to 1.8
eV. In the Ce
1−
x
Bi
x
VO
4 (0≤
x≤0.5) and Ce
1−
x
Y
x
VO
4 (
x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi
3+ or Y
3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4
f orbitals.
The electronic structures of six vanadate salts, Ba
3(VO
4)
2, Pb
3(VO
4)
2, YVO
4, BiVO
4, Ag
3VO
4 and CeVO
4, are studied. The results show that the oxygen to vanadium charge transfer, which is largely responsible for the electronic structure near the Fermi level, can be altered significantly through interactions with the surrounding cations. |
doi_str_mv | 10.1016/j.jssc.2009.04.032 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21370508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022459609001662</els_id><sourcerecordid>S0022459609001662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-dab197d15c1b3b1f3753eacfa7139c36d257505e084217559e05281ec704192e3</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVoIdu0fyAnQenRzowsre3SS1naphDoJYXexFiWEy2OtGjkQP997Wzpsadh4H0z7z0hrhFqBNzfHOsjs6sVQF-DrqFRF2KH0JuqVftfr8QOQKlKm35_Kd4wHwEQTad3Yrx_9NLP3pWcYnCSS15cWbJnmSb5TJFGKl4yzYU_ygOVkKLkZeASyvKyEEuSJaVZTinLgeIoH-gknyiG0zK_AG_F64lm9u_-zivx8-uX-8Ntdffj2_fD57vKaaVLNdKAfTuicTg0A05NaxpPbqIWm941-1GZ1oDx0GmFrTG9B6M69K4Fjb3yzZV4f76bVnuWXSjePboU4xrPKmxaMNCtKnVWuZyYs5_sKYcnyr8tgt3atEe7tWm3Ni1ou7a5Qh_O0InY0Txlii7wP3L1g502ZtV9Ouv8mvM5-LzZ8NH5MeTNxZjC_978Ad3-iyU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation</title><source>Elsevier ScienceDirect Journals</source><creator>Dolgos, Michelle R. ; Paraskos, Alexandra M. ; Stoltzfus, Matthew W. ; Yarnell, Samantha C. ; Woodward, Patrick M.</creator><creatorcontrib>Dolgos, Michelle R. ; Paraskos, Alexandra M. ; Stoltzfus, Matthew W. ; Yarnell, Samantha C. ; Woodward, Patrick M.</creatorcontrib><description>The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba
3(VO
4)
2, Pb
3(VO
4)
2, YVO
4, BiVO
4, CeVO
4 and Ag
3VO
4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba
3(VO
4)
2 and YVO
4 have similar band gaps, both 3.8
eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb
3(VO
4)
2 and BiVO
4 the band gap is reduced by 0.9–1.0
eV through interactions of (a) the filled cation 6
s orbitals with nonbonding O 2
p states at the top of the valence band, and (b) overlap of empty 6
p orbitals with antibonding V 3
d–O 2
p states at the bottom of the conduction band. In Ag
3VO
4 mixing between filled Ag 4
d and O 2
p states destabilizes states at the top of the valence band leading to a large decrease in the band gap (
E
g=2.2
eV). In CeVO
4 excitations from partially filled 4
f orbitals into the conduction band lower the effective band gap to 1.8
eV. In the Ce
1−
x
Bi
x
VO
4 (0≤
x≤0.5) and Ce
1−
x
Y
x
VO
4 (
x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi
3+ or Y
3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4
f orbitals.
The electronic structures of six vanadate salts, Ba
3(VO
4)
2, Pb
3(VO
4)
2, YVO
4, BiVO
4, Ag
3VO
4 and CeVO
4, are studied. The results show that the oxygen to vanadium charge transfer, which is largely responsible for the electronic structure near the Fermi level, can be altered significantly through interactions with the surrounding cations.</description><identifier>ISSN: 0022-4596</identifier><identifier>EISSN: 1095-726X</identifier><identifier>DOI: 10.1016/j.jssc.2009.04.032</identifier><identifier>CODEN: JSSCBI</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>ALKALINE EARTH METAL COMPOUNDS ; BARIUM COMPOUNDS ; BISMUTH COMPOUNDS ; BISMUTH IONS ; CATALYSIS ; CATIONS ; CERIUM COMPOUNDS ; CHALCOGENIDES ; Charge transfer ; CHARGED PARTICLES ; Chemistry ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; DISPERSIONS ; Electron states ; ELECTRONIC STRUCTURE ; ENERGY LEVELS ; ENERGY RANGE ; EV RANGE ; EV RANGE 01-10 ; Exact sciences and technology ; FERMI LEVEL ; Fermi surface: calculations and measurements; effective mass, g factor ; General and physical chemistry ; General, apparatus ; HOMOGENEOUS MIXTURES ; IONS ; LEAD COMPOUNDS ; MATERIALS SCIENCE ; MIXTURES ; OXIDES ; OXYGEN COMPOUNDS ; PHOTOCATALYSIS ; Photocatalyst ; Physics ; Pigments ; RARE EARTH COMPOUNDS ; SILVER COMPOUNDS ; SOLID SOLUTIONS ; SOLUTIONS ; Surface physical chemistry ; TRANSITION ELEMENT COMPOUNDS ; VANADATES ; VANADIUM COMPOUNDS ; YTTRIUM COMPOUNDS ; YTTRIUM IONS</subject><ispartof>Journal of solid state chemistry, 2009-07, Vol.182 (7), p.1964-1971</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-dab197d15c1b3b1f3753eacfa7139c36d257505e084217559e05281ec704192e3</citedby><cites>FETCH-LOGICAL-c424t-dab197d15c1b3b1f3753eacfa7139c36d257505e084217559e05281ec704192e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022459609001662$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21718455$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21370508$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolgos, Michelle R.</creatorcontrib><creatorcontrib>Paraskos, Alexandra M.</creatorcontrib><creatorcontrib>Stoltzfus, Matthew W.</creatorcontrib><creatorcontrib>Yarnell, Samantha C.</creatorcontrib><creatorcontrib>Woodward, Patrick M.</creatorcontrib><title>The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation</title><title>Journal of solid state chemistry</title><description>The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba
3(VO
4)
2, Pb
3(VO
4)
2, YVO
4, BiVO
4, CeVO
4 and Ag
3VO
4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba
3(VO
4)
2 and YVO
4 have similar band gaps, both 3.8
eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb
3(VO
4)
2 and BiVO
4 the band gap is reduced by 0.9–1.0
eV through interactions of (a) the filled cation 6
s orbitals with nonbonding O 2
p states at the top of the valence band, and (b) overlap of empty 6
p orbitals with antibonding V 3
d–O 2
p states at the bottom of the conduction band. In Ag
3VO
4 mixing between filled Ag 4
d and O 2
p states destabilizes states at the top of the valence band leading to a large decrease in the band gap (
E
g=2.2
eV). In CeVO
4 excitations from partially filled 4
f orbitals into the conduction band lower the effective band gap to 1.8
eV. In the Ce
1−
x
Bi
x
VO
4 (0≤
x≤0.5) and Ce
1−
x
Y
x
VO
4 (
x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi
3+ or Y
3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4
f orbitals.
The electronic structures of six vanadate salts, Ba
3(VO
4)
2, Pb
3(VO
4)
2, YVO
4, BiVO
4, Ag
3VO
4 and CeVO
4, are studied. The results show that the oxygen to vanadium charge transfer, which is largely responsible for the electronic structure near the Fermi level, can be altered significantly through interactions with the surrounding cations.</description><subject>ALKALINE EARTH METAL COMPOUNDS</subject><subject>BARIUM COMPOUNDS</subject><subject>BISMUTH COMPOUNDS</subject><subject>BISMUTH IONS</subject><subject>CATALYSIS</subject><subject>CATIONS</subject><subject>CERIUM COMPOUNDS</subject><subject>CHALCOGENIDES</subject><subject>Charge transfer</subject><subject>CHARGED PARTICLES</subject><subject>Chemistry</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>DISPERSIONS</subject><subject>Electron states</subject><subject>ELECTRONIC STRUCTURE</subject><subject>ENERGY LEVELS</subject><subject>ENERGY RANGE</subject><subject>EV RANGE</subject><subject>EV RANGE 01-10</subject><subject>Exact sciences and technology</subject><subject>FERMI LEVEL</subject><subject>Fermi surface: calculations and measurements; effective mass, g factor</subject><subject>General and physical chemistry</subject><subject>General, apparatus</subject><subject>HOMOGENEOUS MIXTURES</subject><subject>IONS</subject><subject>LEAD COMPOUNDS</subject><subject>MATERIALS SCIENCE</subject><subject>MIXTURES</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHOTOCATALYSIS</subject><subject>Photocatalyst</subject><subject>Physics</subject><subject>Pigments</subject><subject>RARE EARTH COMPOUNDS</subject><subject>SILVER COMPOUNDS</subject><subject>SOLID SOLUTIONS</subject><subject>SOLUTIONS</subject><subject>Surface physical chemistry</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>VANADATES</subject><subject>VANADIUM COMPOUNDS</subject><subject>YTTRIUM COMPOUNDS</subject><subject>YTTRIUM IONS</subject><issn>0022-4596</issn><issn>1095-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVoIdu0fyAnQenRzowsre3SS1naphDoJYXexFiWEy2OtGjkQP997Wzpsadh4H0z7z0hrhFqBNzfHOsjs6sVQF-DrqFRF2KH0JuqVftfr8QOQKlKm35_Kd4wHwEQTad3Yrx_9NLP3pWcYnCSS15cWbJnmSb5TJFGKl4yzYU_ygOVkKLkZeASyvKyEEuSJaVZTinLgeIoH-gknyiG0zK_AG_F64lm9u_-zivx8-uX-8Ntdffj2_fD57vKaaVLNdKAfTuicTg0A05NaxpPbqIWm941-1GZ1oDx0GmFrTG9B6M69K4Fjb3yzZV4f76bVnuWXSjePboU4xrPKmxaMNCtKnVWuZyYs5_sKYcnyr8tgt3atEe7tWm3Ni1ou7a5Qh_O0InY0Txlii7wP3L1g502ZtV9Ouv8mvM5-LzZ8NH5MeTNxZjC_978Ad3-iyU</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Dolgos, Michelle R.</creator><creator>Paraskos, Alexandra M.</creator><creator>Stoltzfus, Matthew W.</creator><creator>Yarnell, Samantha C.</creator><creator>Woodward, Patrick M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090701</creationdate><title>The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation</title><author>Dolgos, Michelle R. ; Paraskos, Alexandra M. ; Stoltzfus, Matthew W. ; Yarnell, Samantha C. ; Woodward, Patrick M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-dab197d15c1b3b1f3753eacfa7139c36d257505e084217559e05281ec704192e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ALKALINE EARTH METAL COMPOUNDS</topic><topic>BARIUM COMPOUNDS</topic><topic>BISMUTH COMPOUNDS</topic><topic>BISMUTH IONS</topic><topic>CATALYSIS</topic><topic>CATIONS</topic><topic>CERIUM COMPOUNDS</topic><topic>CHALCOGENIDES</topic><topic>Charge transfer</topic><topic>CHARGED PARTICLES</topic><topic>Chemistry</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>DISPERSIONS</topic><topic>Electron states</topic><topic>ELECTRONIC STRUCTURE</topic><topic>ENERGY LEVELS</topic><topic>ENERGY RANGE</topic><topic>EV RANGE</topic><topic>EV RANGE 01-10</topic><topic>Exact sciences and technology</topic><topic>FERMI LEVEL</topic><topic>Fermi surface: calculations and measurements; effective mass, g factor</topic><topic>General and physical chemistry</topic><topic>General, apparatus</topic><topic>HOMOGENEOUS MIXTURES</topic><topic>IONS</topic><topic>LEAD COMPOUNDS</topic><topic>MATERIALS SCIENCE</topic><topic>MIXTURES</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHOTOCATALYSIS</topic><topic>Photocatalyst</topic><topic>Physics</topic><topic>Pigments</topic><topic>RARE EARTH COMPOUNDS</topic><topic>SILVER COMPOUNDS</topic><topic>SOLID SOLUTIONS</topic><topic>SOLUTIONS</topic><topic>Surface physical chemistry</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>VANADATES</topic><topic>VANADIUM COMPOUNDS</topic><topic>YTTRIUM COMPOUNDS</topic><topic>YTTRIUM IONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolgos, Michelle R.</creatorcontrib><creatorcontrib>Paraskos, Alexandra M.</creatorcontrib><creatorcontrib>Stoltzfus, Matthew W.</creatorcontrib><creatorcontrib>Yarnell, Samantha C.</creatorcontrib><creatorcontrib>Woodward, Patrick M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgos, Michelle R.</au><au>Paraskos, Alexandra M.</au><au>Stoltzfus, Matthew W.</au><au>Yarnell, Samantha C.</au><au>Woodward, Patrick M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>182</volume><issue>7</issue><spage>1964</spage><epage>1971</epage><pages>1964-1971</pages><issn>0022-4596</issn><eissn>1095-726X</eissn><coden>JSSCBI</coden><abstract>The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba
3(VO
4)
2, Pb
3(VO
4)
2, YVO
4, BiVO
4, CeVO
4 and Ag
3VO
4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba
3(VO
4)
2 and YVO
4 have similar band gaps, both 3.8
eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb
3(VO
4)
2 and BiVO
4 the band gap is reduced by 0.9–1.0
eV through interactions of (a) the filled cation 6
s orbitals with nonbonding O 2
p states at the top of the valence band, and (b) overlap of empty 6
p orbitals with antibonding V 3
d–O 2
p states at the bottom of the conduction band. In Ag
3VO
4 mixing between filled Ag 4
d and O 2
p states destabilizes states at the top of the valence band leading to a large decrease in the band gap (
E
g=2.2
eV). In CeVO
4 excitations from partially filled 4
f orbitals into the conduction band lower the effective band gap to 1.8
eV. In the Ce
1−
x
Bi
x
VO
4 (0≤
x≤0.5) and Ce
1−
x
Y
x
VO
4 (
x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi
3+ or Y
3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4
f orbitals.
The electronic structures of six vanadate salts, Ba
3(VO
4)
2, Pb
3(VO
4)
2, YVO
4, BiVO
4, Ag
3VO
4 and CeVO
4, are studied. The results show that the oxygen to vanadium charge transfer, which is largely responsible for the electronic structure near the Fermi level, can be altered significantly through interactions with the surrounding cations.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jssc.2009.04.032</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4596 |
ispartof | Journal of solid state chemistry, 2009-07, Vol.182 (7), p.1964-1971 |
issn | 0022-4596 1095-726X |
language | eng |
recordid | cdi_osti_scitechconnect_21370508 |
source | Elsevier ScienceDirect Journals |
subjects | ALKALINE EARTH METAL COMPOUNDS BARIUM COMPOUNDS BISMUTH COMPOUNDS BISMUTH IONS CATALYSIS CATIONS CERIUM COMPOUNDS CHALCOGENIDES Charge transfer CHARGED PARTICLES Chemistry Condensed matter: electronic structure, electrical, magnetic, and optical properties DISPERSIONS Electron states ELECTRONIC STRUCTURE ENERGY LEVELS ENERGY RANGE EV RANGE EV RANGE 01-10 Exact sciences and technology FERMI LEVEL Fermi surface: calculations and measurements effective mass, g factor General and physical chemistry General, apparatus HOMOGENEOUS MIXTURES IONS LEAD COMPOUNDS MATERIALS SCIENCE MIXTURES OXIDES OXYGEN COMPOUNDS PHOTOCATALYSIS Photocatalyst Physics Pigments RARE EARTH COMPOUNDS SILVER COMPOUNDS SOLID SOLUTIONS SOLUTIONS Surface physical chemistry TRANSITION ELEMENT COMPOUNDS VANADATES VANADIUM COMPOUNDS YTTRIUM COMPOUNDS YTTRIUM IONS |
title | The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20electronic%20structures%20of%20vanadate%20salts:%20Cation%20substitution%20as%20a%20tool%20for%20band%20gap%20manipulation&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=Dolgos,%20Michelle%20R.&rft.date=2009-07-01&rft.volume=182&rft.issue=7&rft.spage=1964&rft.epage=1971&rft.pages=1964-1971&rft.issn=0022-4596&rft.eissn=1095-726X&rft.coden=JSSCBI&rft_id=info:doi/10.1016/j.jssc.2009.04.032&rft_dat=%3Celsevier_osti_%3ES0022459609001662%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022459609001662&rfr_iscdi=true |