The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation

The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, CeVO 4 and Ag 3VO 4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level origi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state chemistry 2009-07, Vol.182 (7), p.1964-1971
Hauptverfasser: Dolgos, Michelle R., Paraskos, Alexandra M., Stoltzfus, Matthew W., Yarnell, Samantha C., Woodward, Patrick M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1971
container_issue 7
container_start_page 1964
container_title Journal of solid state chemistry
container_volume 182
creator Dolgos, Michelle R.
Paraskos, Alexandra M.
Stoltzfus, Matthew W.
Yarnell, Samantha C.
Woodward, Patrick M.
description The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, CeVO 4 and Ag 3VO 4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba 3(VO 4) 2 and YVO 4 have similar band gaps, both 3.8 eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb 3(VO 4) 2 and BiVO 4 the band gap is reduced by 0.9–1.0 eV through interactions of (a) the filled cation 6 s orbitals with nonbonding O 2 p states at the top of the valence band, and (b) overlap of empty 6 p orbitals with antibonding V 3 d–O 2 p states at the bottom of the conduction band. In Ag 3VO 4 mixing between filled Ag 4 d and O 2 p states destabilizes states at the top of the valence band leading to a large decrease in the band gap ( E g=2.2 eV). In CeVO 4 excitations from partially filled 4 f orbitals into the conduction band lower the effective band gap to 1.8 eV. In the Ce 1− x Bi x VO 4 (0≤ x≤0.5) and Ce 1− x Y x VO 4 ( x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi 3+ or Y 3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4 f orbitals. The electronic structures of six vanadate salts, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, Ag 3VO 4 and CeVO 4, are studied. The results show that the oxygen to vanadium charge transfer, which is largely responsible for the electronic structure near the Fermi level, can be altered significantly through interactions with the surrounding cations.
doi_str_mv 10.1016/j.jssc.2009.04.032
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21370508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022459609001662</els_id><sourcerecordid>S0022459609001662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-dab197d15c1b3b1f3753eacfa7139c36d257505e084217559e05281ec704192e3</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVoIdu0fyAnQenRzowsre3SS1naphDoJYXexFiWEy2OtGjkQP997Wzpsadh4H0z7z0hrhFqBNzfHOsjs6sVQF-DrqFRF2KH0JuqVftfr8QOQKlKm35_Kd4wHwEQTad3Yrx_9NLP3pWcYnCSS15cWbJnmSb5TJFGKl4yzYU_ygOVkKLkZeASyvKyEEuSJaVZTinLgeIoH-gknyiG0zK_AG_F64lm9u_-zivx8-uX-8Ntdffj2_fD57vKaaVLNdKAfTuicTg0A05NaxpPbqIWm941-1GZ1oDx0GmFrTG9B6M69K4Fjb3yzZV4f76bVnuWXSjePboU4xrPKmxaMNCtKnVWuZyYs5_sKYcnyr8tgt3atEe7tWm3Ni1ou7a5Qh_O0InY0Txlii7wP3L1g502ZtV9Ouv8mvM5-LzZ8NH5MeTNxZjC_978Ad3-iyU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation</title><source>Elsevier ScienceDirect Journals</source><creator>Dolgos, Michelle R. ; Paraskos, Alexandra M. ; Stoltzfus, Matthew W. ; Yarnell, Samantha C. ; Woodward, Patrick M.</creator><creatorcontrib>Dolgos, Michelle R. ; Paraskos, Alexandra M. ; Stoltzfus, Matthew W. ; Yarnell, Samantha C. ; Woodward, Patrick M.</creatorcontrib><description>The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, CeVO 4 and Ag 3VO 4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba 3(VO 4) 2 and YVO 4 have similar band gaps, both 3.8 eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb 3(VO 4) 2 and BiVO 4 the band gap is reduced by 0.9–1.0 eV through interactions of (a) the filled cation 6 s orbitals with nonbonding O 2 p states at the top of the valence band, and (b) overlap of empty 6 p orbitals with antibonding V 3 d–O 2 p states at the bottom of the conduction band. In Ag 3VO 4 mixing between filled Ag 4 d and O 2 p states destabilizes states at the top of the valence band leading to a large decrease in the band gap ( E g=2.2 eV). In CeVO 4 excitations from partially filled 4 f orbitals into the conduction band lower the effective band gap to 1.8 eV. In the Ce 1− x Bi x VO 4 (0≤ x≤0.5) and Ce 1− x Y x VO 4 ( x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi 3+ or Y 3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4 f orbitals. The electronic structures of six vanadate salts, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, Ag 3VO 4 and CeVO 4, are studied. The results show that the oxygen to vanadium charge transfer, which is largely responsible for the electronic structure near the Fermi level, can be altered significantly through interactions with the surrounding cations.</description><identifier>ISSN: 0022-4596</identifier><identifier>EISSN: 1095-726X</identifier><identifier>DOI: 10.1016/j.jssc.2009.04.032</identifier><identifier>CODEN: JSSCBI</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>ALKALINE EARTH METAL COMPOUNDS ; BARIUM COMPOUNDS ; BISMUTH COMPOUNDS ; BISMUTH IONS ; CATALYSIS ; CATIONS ; CERIUM COMPOUNDS ; CHALCOGENIDES ; Charge transfer ; CHARGED PARTICLES ; Chemistry ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; DISPERSIONS ; Electron states ; ELECTRONIC STRUCTURE ; ENERGY LEVELS ; ENERGY RANGE ; EV RANGE ; EV RANGE 01-10 ; Exact sciences and technology ; FERMI LEVEL ; Fermi surface: calculations and measurements; effective mass, g factor ; General and physical chemistry ; General, apparatus ; HOMOGENEOUS MIXTURES ; IONS ; LEAD COMPOUNDS ; MATERIALS SCIENCE ; MIXTURES ; OXIDES ; OXYGEN COMPOUNDS ; PHOTOCATALYSIS ; Photocatalyst ; Physics ; Pigments ; RARE EARTH COMPOUNDS ; SILVER COMPOUNDS ; SOLID SOLUTIONS ; SOLUTIONS ; Surface physical chemistry ; TRANSITION ELEMENT COMPOUNDS ; VANADATES ; VANADIUM COMPOUNDS ; YTTRIUM COMPOUNDS ; YTTRIUM IONS</subject><ispartof>Journal of solid state chemistry, 2009-07, Vol.182 (7), p.1964-1971</ispartof><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-dab197d15c1b3b1f3753eacfa7139c36d257505e084217559e05281ec704192e3</citedby><cites>FETCH-LOGICAL-c424t-dab197d15c1b3b1f3753eacfa7139c36d257505e084217559e05281ec704192e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022459609001662$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21718455$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21370508$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolgos, Michelle R.</creatorcontrib><creatorcontrib>Paraskos, Alexandra M.</creatorcontrib><creatorcontrib>Stoltzfus, Matthew W.</creatorcontrib><creatorcontrib>Yarnell, Samantha C.</creatorcontrib><creatorcontrib>Woodward, Patrick M.</creatorcontrib><title>The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation</title><title>Journal of solid state chemistry</title><description>The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, CeVO 4 and Ag 3VO 4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba 3(VO 4) 2 and YVO 4 have similar band gaps, both 3.8 eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb 3(VO 4) 2 and BiVO 4 the band gap is reduced by 0.9–1.0 eV through interactions of (a) the filled cation 6 s orbitals with nonbonding O 2 p states at the top of the valence band, and (b) overlap of empty 6 p orbitals with antibonding V 3 d–O 2 p states at the bottom of the conduction band. In Ag 3VO 4 mixing between filled Ag 4 d and O 2 p states destabilizes states at the top of the valence band leading to a large decrease in the band gap ( E g=2.2 eV). In CeVO 4 excitations from partially filled 4 f orbitals into the conduction band lower the effective band gap to 1.8 eV. In the Ce 1− x Bi x VO 4 (0≤ x≤0.5) and Ce 1− x Y x VO 4 ( x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi 3+ or Y 3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4 f orbitals. The electronic structures of six vanadate salts, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, Ag 3VO 4 and CeVO 4, are studied. The results show that the oxygen to vanadium charge transfer, which is largely responsible for the electronic structure near the Fermi level, can be altered significantly through interactions with the surrounding cations.</description><subject>ALKALINE EARTH METAL COMPOUNDS</subject><subject>BARIUM COMPOUNDS</subject><subject>BISMUTH COMPOUNDS</subject><subject>BISMUTH IONS</subject><subject>CATALYSIS</subject><subject>CATIONS</subject><subject>CERIUM COMPOUNDS</subject><subject>CHALCOGENIDES</subject><subject>Charge transfer</subject><subject>CHARGED PARTICLES</subject><subject>Chemistry</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>DISPERSIONS</subject><subject>Electron states</subject><subject>ELECTRONIC STRUCTURE</subject><subject>ENERGY LEVELS</subject><subject>ENERGY RANGE</subject><subject>EV RANGE</subject><subject>EV RANGE 01-10</subject><subject>Exact sciences and technology</subject><subject>FERMI LEVEL</subject><subject>Fermi surface: calculations and measurements; effective mass, g factor</subject><subject>General and physical chemistry</subject><subject>General, apparatus</subject><subject>HOMOGENEOUS MIXTURES</subject><subject>IONS</subject><subject>LEAD COMPOUNDS</subject><subject>MATERIALS SCIENCE</subject><subject>MIXTURES</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>PHOTOCATALYSIS</subject><subject>Photocatalyst</subject><subject>Physics</subject><subject>Pigments</subject><subject>RARE EARTH COMPOUNDS</subject><subject>SILVER COMPOUNDS</subject><subject>SOLID SOLUTIONS</subject><subject>SOLUTIONS</subject><subject>Surface physical chemistry</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>VANADATES</subject><subject>VANADIUM COMPOUNDS</subject><subject>YTTRIUM COMPOUNDS</subject><subject>YTTRIUM IONS</subject><issn>0022-4596</issn><issn>1095-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVoIdu0fyAnQenRzowsre3SS1naphDoJYXexFiWEy2OtGjkQP997Wzpsadh4H0z7z0hrhFqBNzfHOsjs6sVQF-DrqFRF2KH0JuqVftfr8QOQKlKm35_Kd4wHwEQTad3Yrx_9NLP3pWcYnCSS15cWbJnmSb5TJFGKl4yzYU_ygOVkKLkZeASyvKyEEuSJaVZTinLgeIoH-gknyiG0zK_AG_F64lm9u_-zivx8-uX-8Ntdffj2_fD57vKaaVLNdKAfTuicTg0A05NaxpPbqIWm941-1GZ1oDx0GmFrTG9B6M69K4Fjb3yzZV4f76bVnuWXSjePboU4xrPKmxaMNCtKnVWuZyYs5_sKYcnyr8tgt3atEe7tWm3Ni1ou7a5Qh_O0InY0Txlii7wP3L1g502ZtV9Ouv8mvM5-LzZ8NH5MeTNxZjC_978Ad3-iyU</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Dolgos, Michelle R.</creator><creator>Paraskos, Alexandra M.</creator><creator>Stoltzfus, Matthew W.</creator><creator>Yarnell, Samantha C.</creator><creator>Woodward, Patrick M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090701</creationdate><title>The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation</title><author>Dolgos, Michelle R. ; Paraskos, Alexandra M. ; Stoltzfus, Matthew W. ; Yarnell, Samantha C. ; Woodward, Patrick M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-dab197d15c1b3b1f3753eacfa7139c36d257505e084217559e05281ec704192e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ALKALINE EARTH METAL COMPOUNDS</topic><topic>BARIUM COMPOUNDS</topic><topic>BISMUTH COMPOUNDS</topic><topic>BISMUTH IONS</topic><topic>CATALYSIS</topic><topic>CATIONS</topic><topic>CERIUM COMPOUNDS</topic><topic>CHALCOGENIDES</topic><topic>Charge transfer</topic><topic>CHARGED PARTICLES</topic><topic>Chemistry</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>DISPERSIONS</topic><topic>Electron states</topic><topic>ELECTRONIC STRUCTURE</topic><topic>ENERGY LEVELS</topic><topic>ENERGY RANGE</topic><topic>EV RANGE</topic><topic>EV RANGE 01-10</topic><topic>Exact sciences and technology</topic><topic>FERMI LEVEL</topic><topic>Fermi surface: calculations and measurements; effective mass, g factor</topic><topic>General and physical chemistry</topic><topic>General, apparatus</topic><topic>HOMOGENEOUS MIXTURES</topic><topic>IONS</topic><topic>LEAD COMPOUNDS</topic><topic>MATERIALS SCIENCE</topic><topic>MIXTURES</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>PHOTOCATALYSIS</topic><topic>Photocatalyst</topic><topic>Physics</topic><topic>Pigments</topic><topic>RARE EARTH COMPOUNDS</topic><topic>SILVER COMPOUNDS</topic><topic>SOLID SOLUTIONS</topic><topic>SOLUTIONS</topic><topic>Surface physical chemistry</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>VANADATES</topic><topic>VANADIUM COMPOUNDS</topic><topic>YTTRIUM COMPOUNDS</topic><topic>YTTRIUM IONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolgos, Michelle R.</creatorcontrib><creatorcontrib>Paraskos, Alexandra M.</creatorcontrib><creatorcontrib>Stoltzfus, Matthew W.</creatorcontrib><creatorcontrib>Yarnell, Samantha C.</creatorcontrib><creatorcontrib>Woodward, Patrick M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolgos, Michelle R.</au><au>Paraskos, Alexandra M.</au><au>Stoltzfus, Matthew W.</au><au>Yarnell, Samantha C.</au><au>Woodward, Patrick M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>182</volume><issue>7</issue><spage>1964</spage><epage>1971</epage><pages>1964-1971</pages><issn>0022-4596</issn><eissn>1095-726X</eissn><coden>JSSCBI</coden><abstract>The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, CeVO 4 and Ag 3VO 4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba 3(VO 4) 2 and YVO 4 have similar band gaps, both 3.8 eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb 3(VO 4) 2 and BiVO 4 the band gap is reduced by 0.9–1.0 eV through interactions of (a) the filled cation 6 s orbitals with nonbonding O 2 p states at the top of the valence band, and (b) overlap of empty 6 p orbitals with antibonding V 3 d–O 2 p states at the bottom of the conduction band. In Ag 3VO 4 mixing between filled Ag 4 d and O 2 p states destabilizes states at the top of the valence band leading to a large decrease in the band gap ( E g=2.2 eV). In CeVO 4 excitations from partially filled 4 f orbitals into the conduction band lower the effective band gap to 1.8 eV. In the Ce 1− x Bi x VO 4 (0≤ x≤0.5) and Ce 1− x Y x VO 4 ( x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi 3+ or Y 3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4 f orbitals. The electronic structures of six vanadate salts, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, Ag 3VO 4 and CeVO 4, are studied. The results show that the oxygen to vanadium charge transfer, which is largely responsible for the electronic structure near the Fermi level, can be altered significantly through interactions with the surrounding cations.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jssc.2009.04.032</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4596
ispartof Journal of solid state chemistry, 2009-07, Vol.182 (7), p.1964-1971
issn 0022-4596
1095-726X
language eng
recordid cdi_osti_scitechconnect_21370508
source Elsevier ScienceDirect Journals
subjects ALKALINE EARTH METAL COMPOUNDS
BARIUM COMPOUNDS
BISMUTH COMPOUNDS
BISMUTH IONS
CATALYSIS
CATIONS
CERIUM COMPOUNDS
CHALCOGENIDES
Charge transfer
CHARGED PARTICLES
Chemistry
Condensed matter: electronic structure, electrical, magnetic, and optical properties
DISPERSIONS
Electron states
ELECTRONIC STRUCTURE
ENERGY LEVELS
ENERGY RANGE
EV RANGE
EV RANGE 01-10
Exact sciences and technology
FERMI LEVEL
Fermi surface: calculations and measurements
effective mass, g factor
General and physical chemistry
General, apparatus
HOMOGENEOUS MIXTURES
IONS
LEAD COMPOUNDS
MATERIALS SCIENCE
MIXTURES
OXIDES
OXYGEN COMPOUNDS
PHOTOCATALYSIS
Photocatalyst
Physics
Pigments
RARE EARTH COMPOUNDS
SILVER COMPOUNDS
SOLID SOLUTIONS
SOLUTIONS
Surface physical chemistry
TRANSITION ELEMENT COMPOUNDS
VANADATES
VANADIUM COMPOUNDS
YTTRIUM COMPOUNDS
YTTRIUM IONS
title The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20electronic%20structures%20of%20vanadate%20salts:%20Cation%20substitution%20as%20a%20tool%20for%20band%20gap%20manipulation&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=Dolgos,%20Michelle%20R.&rft.date=2009-07-01&rft.volume=182&rft.issue=7&rft.spage=1964&rft.epage=1971&rft.pages=1964-1971&rft.issn=0022-4596&rft.eissn=1095-726X&rft.coden=JSSCBI&rft_id=info:doi/10.1016/j.jssc.2009.04.032&rft_dat=%3Celsevier_osti_%3ES0022459609001662%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022459609001662&rfr_iscdi=true